Судовые машины. Судовые энергетические установки и движители Лучший выбор от компании «Норта МИТ»

Возможно, первый судовой двигатель появился так. Наш далекий предок, усевшись на упавшее в водный поток бревно, решил переправиться на другой берег реки. Загребая воду ладонями, как веслами, он сочетал в себе и первый двигатель - в одну «человеческую» силу - и первый движитель, которым являлись его руки. Но постепенно люди, изучив законы природы, поставили их себе на службу. Ветер, вода и, наконец, пар отчасти заменили силу мышц. На смену веслам пришел парус, а паруса начала вытеснять машина.

Идея создать паровой двигатель возникла более 2000 лет назад. Греческий ученый Герон, живший в Александрии, сконструировал оригинальную паровую машину. Значительно позже английский механик Джеймс Уатт создал паровую машину, которой суждено было стать первой судовой силовой установкой .

Пароходы

11 августа 1807 года принято считать днем рождения парового судна. В этот день произошло испытание парохода, построенного талантливым американским инженером Робертом Фултоном. Пароход «Клермонт » открыл регулярные рейсы по реке Гудзон между Нью-Йорком и Олбени. В 1838 году британский пароход «Great Eastern » пересек Атлантику, не поднимая парусов, хотя и имел парусное вооружение. Рост промышленности требовал корабли и суда , которые могли бы независимо от воли стихии совершать регулярные рейсы по Атлантическому и Тихому океанам. В XIX веке резко возросли размеры паровых судов, а вместе с ними и мощности паровых машин. К 90-м годам мощность их была доведена до 9000 лошадиных сил.

Постепенно паровые машины становились все более мощными и надежными. Первые судовые силовые установки состояли из поршневой паровой машины и больших маломощных котлов, отапливаемых углем.

Сто лет спустя коэффициент полезного действия (КПД) паровой силовой установки уже равнялся 30 процентам, и развивала мощность до 14720 кВт, а число обслуживающего персонала сократилось до 15 человек. Но малая производительность паровых котлов требовала увеличения их количества.

На грани двух веков паровыми машинами оборудовались в основном пассажирские суда и грузопассажирские корабли , чисто грузовыми судами были только парусники . Это объяснялось несовершенством и малой эффективностью паровой силовой установки того времени.

Применение появившихся в 80-х годах XIX века водотрубных котлов, которые сейчас работают на жидком топливе, улучшило эффективность паровых силовых установок. Но коэффициент полезного действия их достиг всего лишь 15 процентов, чем и объясняется прекращение постройки пароходов. Но в наше время еще можно встретить суда, приводимые в движение поршневыми паровыми машинами это речной пароход «American Queen ».

Судовые поршневые паровые машины

поршневой паровой двигатель

В судовых силовых установках с паровыми машинами в качестве рабочего тела используется водяной пар. Поскольку пресную воду на судах можно перевозить только в ограниченном количестве, в данном случае применяют замкнутую систему циркуляции воды и пара. Разумеется, при работе силовой установки возникают определенные потери пара или воды, однако они незначительны и возмещаются водой из цистерны или испарителей.

Принцип действия поршневой паровой машины

Рабочий пар подается в паровой цилиндр через паровые поршни. Он расширяется, давит на поршень и заставляет его скользить вниз. Когда поршень достигает своей нижней точки, парораспределительный золотник изменяет свое положение. Свежий пар подается под поршень, в то время как пар, заполнявший прежде цилиндр, вытесняется.

Теперь поршень движется в противоположном направлении. Таким образом, поршень совершает во время работы движения вверх и вниз, которые с помощью кривошипно-шатунного механизма, состоящего из штока, ползуна и соединенного с коленчатым валом шатуна, преобразуются во вращательные движения коленчатого вала. Впуск и выпуск свежего и отработавшего пара регулируют клапаном. Клапан приводится в действие от коленчатого вала посредством двух эксцентриков, которые через штанги и шатун соединены с золотниковой штангой.

Перемещение шатуна с помощью переводного рычага вызывает изменение количества пара, заполнившего цилиндр за один подъем поршня, а следовательно, меняются мощность и частота вращения машины. Когда шатун находится в среднем положении, пар уже не входит в цилиндр, и паровая машина прекращает движение. При дальнейшем перемещении шатуна с помощью переводного рычага машина снова приводится в движение, на этот раз в противоположном направлении. Это обусловливает обратное движение судового движителя .

В первых судовых силовых установках применяли поршневые паровые машины, в которых расширение от входного до выходного давления и до давления в конденсаторе происходило в одном цилиндре. Принцип действия поршневой паровой машины показан на рисунке 2 . Со временем стали применять машины многоступенчатого расширения. Принцип действия машины трехступенчатого расширения схематично показан на рисунке 3.

поршневая паровая машина

поршневая паровая машина трехкратного росширения

Возможно, первый судовой двигатель появился так. Наш далекий предок, усевшись на упавшее в водный поток бревно, решил переправиться на другой берег реки. Загребая воду ладонями, как веслами, он сочетал в себе и первый двигатель - в одну «человеческую» силу - и первый движитель, которым являлись его руки. Но постепенно люди, изучив законы природы, поставили их себе на службу. Ветер, вода и, наконец, пар отчасти заменили силу мышц. На смену веслам пришел парус, а паруса начала вытеснять машина.

Идея создать паровой двигатель возникла более 2000 лет назад. Греческий ученый Герон, живший в Александрии, сконструировал оригинальную паровую машину. Значительно позже английский механик Джеймс Уатт создал паровую машину, которой суждено было стать первой судовой силовой установкой .

ПАРОХОДЫ

11 августа 1807 года принято считать днем рождения парового судна. В этот день произошло испытание парохода, построенного талантливым американским инженером Робертом Фултоном. Пароход «Клермонт » открыл регулярные рейсы по реке Гудзон между Нью-Йорком и Олбени. В 1838 году британский пароход « » пересек Атлантику, не поднимая парусов, хотя и имел парусное вооружение. Рост промышленности требовал , которые могли бы независимо от воли стихии совершать регулярные рейсы по Атлантическому и Тихому океанам. В XIX веке резко возросли размеры паровых судов, а вместе с ними и мощности паровых машин. К 90-м годам мощность их была доведена до 9000 лошадиных сил.

Постепенно паровые машины становились все более мощными и надежными. Первые судовые силовые установки состояли из поршневой паровой машины и больших маломощных котлов, отапливаемых углем.

Сто лет спустя коэффициент полезного действия (КПД) паровой силовой установки уже равнялся 30 процентам, и развивала мощность до 14720 кВт, а число обслуживающего персонала сократилось до 15 человек. Но малая производительность паровых котлов требовала увеличения их количества.

На грани двух веков паровыми машинами оборудовались в основном пассажирские суда и грузопассажирские корабли , чисто грузовыми судами были только . Это объяснялось несовершенством и малой эффективностью паровой силовой установки того времени.

Применение появившихся в 80-х годах XIX века водотрубных котлов, которые сейчас работают на жидком топливе, улучшило эффективность паровых силовых установок. Но коэффициент полезного действия их достиг всего лишь 15 процентов, чем и объясняется прекращение постройки пароходов. Но в наше время еще можно встретить суда, приводимые в движение поршневыми паровыми машинами это речной пароход « ».

СУДОВЫЕ ПОРШНЕВЫЕ ПАРОВЫЕ МАШИНЫ

поршневой паровой двигатель

В судовых силовых установках с паровыми машинами в качестве рабочего тела используется водяной пар. Поскольку пресную воду на судах можно перевозить только в ограниченном количестве, в данном случае применяют замкнутую систему циркуляции воды и пара. Разумеется, при работе силовой установки возникают определенные потери пара или воды, однако они незначительны и возмещаются водой из цистерны или испарителей. Упрощенная схема такой циркуляции дана на рисунке 1 .

принцип действия паровой установки

ПРИНЦИП ДЕЙСТВИЯ ПОРШНЕВОЙ ПАРОВОЙ МАШИНЫ

Рабочий пар подается в паровой цилиндр через паровые поршни. Он расширяется, давит на поршень и заставляет его скользить вниз. Когда поршень достигает своей нижней точки, парораспределительный золотник изменяет свое положение. Свежий пар подается под поршень, в то время как пар, заполнявший прежде цилиндр, вытесняется.

Теперь поршень движется в противоположном направлении. Таким образом, поршень совершает во время работы движения вверх и вниз, которые с помощью кривошипно-шатунного механизма, состоящего из штока, ползуна и соединенного с коленчатым валом шатуна, преобразуются во вращательные движения коленчатого вала. Впуск и выпуск свежего и отработавшего пара регулируют клапаном. Клапан приводится в действие от коленчатого вала посредством двух эксцентриков, которые через штанги и шатун соединены с золотниковой штангой.

Перемещение шатуна с помощью переводного рычага вызывает изменение количества пара, заполнившего цилиндр за один подъем поршня, а следовательно, меняются мощность и частота вращения машины. Когда шатун находится в среднем положении, пар уже не входит в цилиндр, и паровая машина прекращает движение. При дальнейшем перемещении шатуна с помощью переводного рычага машина снова приводится в движение, на этот раз в противоположном направлении. Это обусловливает обратное движение судового .

В первых судовых силовых установках применяли поршневые паровые машины, в которых расширение от входного до выходного давления и до давления в конденсаторе происходило в одном цилиндре. Принцип действия поршневой паровой машины показан на рисунке 2 . Со временем стали применять машины многоступенчатого расширения. Принцип действия машины трехступенчатого расширения схематично показан на рисунке 3.

поршневая паровая машина

поршневая паровая машина трехкратного росширения

ЭЛЕКТРОХОДЫ

В 1838 году жители Петербурга могли наблюдать, как по Неве двигалась небольшая лодка без парусов, весел и трубы. Это и был первый в мире электроход, построенный академиком Б. С. Якоби. Моторы судна потребляли энергию от аккумуляторных батарей. Изобретение ученого почти на целый век опередило мировую судостроительную науку. Но практическое применение на судах этот двигатель получил только на подводных лодках для движения в подводном положении. К недостаткам электроходов относят относительную сложность силовой установки .

ТУРБОХОДЫ

судно «Turbinia»

Применение турбины в качестве главного двигателя нашло себя на судне под названием «Turbinia » водоизмещением 45 тонн, которое было спущено на воду в Англии конструктором Чарльзом Парсонсом.

Многоступенчатая паротурбинная установка состояла из паровых котлов и трех турбин, напрямую соединенных с гребным валом. На каждом гребном вале находилось по три гребных винта (система тандем). Общая мощность турбин составляла 2000 л. с. при 200 оборотов в минуту. В 1896 году во время ходовых испытаний судно «Turbinia » развило скорость 34,5 узла.

Военные моряки по достоинству оценили появление новой силовой установки . Турбину начали устанавливать на и , а со временем стал главным двигателем почти всех пассажирских судов.

В середине XX века началась конкурентная борьба между паротурбинными и дизельными силовыми установками за применение их на больших судах для транспортировки объемных грузов, в том числе и танкерах. Первоначально на судах дедвейтом до 40000 тонн преобладали паротурбинные силовые установки, но стремительное развитие двигателей внутреннего сгорания привело к тому, что некоторые корабли и суда водоизмещением более 100000 тонн и в настоящее время оборудуются дизельными силовыми установками. Паротурбинные установки сохранились даже на крупных боевых кораблях, а также на быстроходных и больших контейнеровозах, когда мощность главного двигателя составляет 40000 л. с. и более.

ПРИНЦИП ДЕЙСТВИЯ СУДОВОЙ ПАРОВОЙ ТУРБИНЫ

паровая турбина мощностью 20000 л. с.

Паровая турбина относится к силовым установкам, в которых тепловая энергия подведенного пара изначально превращается в кинетическую, а только после этого используется для работы.

Паровые турбины являются гидравлическими тепловыми двигателями, у которых в отличие от поршневых паровых машин и поршневых двигателей внутреннего сгорания не требуется преобразовывать возвратно-поступательное движение поршня во вращательное движение гребного винта. За счет этого упрощается конструкция, и решаются многие технические проблемы. Кроме того, паровые турбины даже при очень большой мощности имеют сравнительно небольшие размеры, так как частота вращения ротора довольно высока и в зависимости от типа и назначения турбины составляет от 3000 до 8000 оборотов в минуту.

Использование кинетической энергии для совершения механической работы происходит следующим образом. Выходящий из расширительных устройств пар попадает на вогнутые профили лопаток, отклоняется от них, изменяет свое направление и за счет этого воздействует тангенциальной силой на ротор. В результате создается вращающий момент, который вызывает вращение ротора турбины.

Современные паровые турбины судовой силовой установки состоят обычно из двух корпусов. В одном корпусе находится ротор турбины высокого давления, а в другом - низкого. Каждая турбина состоит из нескольких ступеней, которые в зависимости от вида турбины обозначаются как ступени давления или ступени скорости. Рабочий пар последовательно проходит через неподвижные венцы расширительных устройств и венцы рабочих лопаток. Так как объем пара во время процесса расширения постоянно увеличивается, рабочие лопатки по мере падения давления должны быть длиннее.

В корпусе турбины низкого давления находятся особые венцы рабочих лопаток турбины заднего хода. Турбины главной энергетической установки на судах, гребные винты которых имеют изменяющийся шаг, не нуждаются в турбинах заднего хода. Наряду с турбинами главной энергетической установки в машинных отделениях судов устанавливают вспомогательные турбины, которые служат для привода генераторов, насосов, вентиляторов и т. д. Принцип действия ступени паровой турбины показан на рисунке 4 .

судовая паровая турбина

В коммерческом флоте паровая турбина получила признание только после ее применения на , «Мавритания » и « » построенные в 1907 году. Эти ы с легкостью развивали скорость 26 узлов. Голубую ленту Атлантики - «Мавритания » сохраняло за собой на протяжении 20 лет.

ТУРБОЭЛЕКТРОХОДЫ

Силовой установкой , состоящей из парового котла, турбины, генератора и электромотора, были оснащены турбоэлектроходы. Широкое применение они нашли в США. Со временем тяжелые электрогенераторы и электродвигатели постепенно были вытеснены редукторами.

Значительный интерес вызвала постройка турбоэлектрохода «Канберра ». Весовые показатели не остановили конструкторов. Было подсчитано, что при мощностях от 75000 до 100000 л. с. потери энергии при применении переменного тока соизмерим с потерями в редукторе и гидравлической передаче, а отказ от ступеней заднего хода даже увеличил экономические показатели силовой установки. Как правило, турбоэлектроходами считаются только крупные суда, чаще - пассажирские.

При меньших мощностях более целесообразно применять редукторные передачи, потери в которых составляют лишь 1,5 - 4 процента.

Afrikaans Albanian Arabic Armenian Azerbaijani Basque Belarusian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Detect language Dutch English Estonian Filipino Finnish French Galician Georgian German Greek Haitian Creole Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Japanese Korean Latin Latvian Lithuanian Macedonian Malay Maltese Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese Welsh Yiddish ⇄ Afrikaans Albanian Arabic Armenian Azerbaijani Basque Belarusian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Filipino Finnish French Galician Georgian German Greek Haitian Creole Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Japanese Korean Latin Latvian Lithuanian Macedonian Malay Maltese Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese Welsh Yiddish

English (auto-detected) » Russian

Лучший выбор от компании «Норта МИТ»

Судовые холодильные машины – это установки для охлаждения производственных и технических помещений судов. Они могут использоваться, к примеру, для поддержания заданной низкой температуры в помещениях, предназначенных для хранения свежевыловленной рыбы, а также изготовления льда для заморозки улова, солёной и консервированной рыбы на рыболовных траулерах. Также эти устройства применяются для хранения продуктов питания в провизионных камерах, предназначенных для экипажа и пассажиров (если речь идёт о пассажирском судне). Кроме того судовые холодильные машины – это также установки кондиционирования воздуха. Это могут быть центральные кондиционеры, системы кондиционирования «чиллер-фанкойл» и сплит-системы.

Наши товары – для долгой и надёжной работы

Не секрет, что к допуску судовых холодильных машин к эксплуатации, а также их сертификации различными контролирующими инстанциями предъявляются особые требования. Причина этого заключается в том, что в отличие от стационарных аналогов этим агрегатам приходится работать в более сложных с точки зрения внешней среды условиях, и чтобы максимально обезопасить выход в рейс для членов экипажа и самого судна, необходимо подвергать эти устройства самой тщательной проверке. К условиям могут относиться существенные колебания температуры воздуха и воды за бортом, показателей влажности, интенсивность коррозии и даже качка. Существует множество требований к данному виду установок, которые можно найти в Морском и Речном Регистрах РФ, регистре Ллойда и т.д. Холодильные судовые машины, которые представляет компания «Норта МИТ», удовлетворяют всем этим требованиям и служат своим владельцам долгую службу – наши клиенты это подтвердят.

Перспективные технологии

«Морским исполнением» холодильных судовых машин называется их инженерно-техническая подготовка к эксплуатации на судах, т.е. в условиях повышенной влажности, колебаний температур, вибрации и пр. Аппараты для создания льда (т.н. ледогенераторы) охлаждаются непосредственно, а охлаждение трюмов обычно косвенное. Непосредственное охлаждение трюмов не используется, чтобы избежать утечки хладагента, вызываемой непрерывными сильными вибрациями корпуса судна.

Стоит отметить и переход машин судовых холодильных на работу с новыми типами хладагентов. К примеру, раньше они работали в основном на хладагентах R12 и R22, но из-за прекращения производства R12 на рынке стала расти доля аммиачных аналогов, впрочем, к нынешнему моменту она составляет около 1/5 от общего объёма используемых охлаждающих веществ. Специалисты делают ставку на применение аммиачных хладагентов, а также возлагают надежды на открытие новых, более современных их заменителей.

Машины судовые

МАШИНЫ СУДОВЫЯ . См. Двигатели судовые .


Военная энциклопедия. - СПб.: Т-во И.Д. Сытина . Под ред. В.Ф. Новицкого и др. . 1911-1915 .

Смотреть что такое "Машины судовые" в других словарях:

    ЭЛЕКТРИЧЕСКИЕ МАШИНЫ судовые - устройства для преобразования механической энергии в электрическую и обратно. Электрические машины делятся на два основных вида: генераторы и электродвигатели. Конструктивно Электрические машины состоят из неподвижной и вращающейся системы… …

    МАШИНЫ МУСОРНЫЕ, МУСОРОУДАЛИТЕЛИ - вспомогательные судовые механизмы, служащие для выгрузки из кочегарных отделений золы и шлака, вычищенных из топок котлов. По своему устройству мусорные машины разделяются на: мусорные лебедки, поднимающие мусор в ведрах из кочегарок на верхнюю… … Морской словарь

    МАШИНЫ ШПИЛЕВЫЕ - судовые вспомогательные механизмы, служащие для выбирания ката и др. тяжелых работ по тяге тросов и цепей. М. Ш. бывают паровые и электрические. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР,… … Морской словарь

    СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ - устройства для обеспечения движения кораблей, катеров и других судов. К движителям относятся гребной винт и гребное колесо. В качестве судовых энергетических установок используются, как правило, паровые машины и турбины, газовые турбины и… … Энциклопедия Кольера

    Судовые механизмы - вспомогательные, обеспечивают работу главных судовых двигателей (См. Судовой двигатель), судовых систем (См. Судовые системы) и судовых устройств (См. Судовые устройства). К собственно С. м. относятся: насосы, компрессоры и вентиляторы,… … Большая советская энциклопедия

    Судовые машины - см. Судостроение … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    ВСПОМОГАТЕЛЬНЫЕ СУДОВЫЕ МЕХАНИЗМЫ. Каждое воен. судно, кромѣ гл. двигателя, обслуживается рядомъ другихъ, мелк. механизмовъ, к рые называются вспомогательными и м. б. разбиты на 2 группы: механизмы, обслуживающіе котлы и гл. машины, и механизмы… … Военная энциклопедия

    - (паровые). Первое примѣненіе паровой машины, какъ суд. Д., сдѣлано въ 1801 г. англичаниномъ Симингтономъ, построившимъ пар. буксир. шлюпъ Charlotte Dundas. Спустя 6 лѣтъ въ Америкѣ построено Робертомъ Фультономъ первое пар. колес. судно Clermont; … Военная энциклопедия

    ЛАЗАРЕТЫ СУДОВЫЕ, устраиваются на всѣхъ воен. судахъ, за исключ. мин цевъ и подвод. лодокъ. Число коекъ устанавливается по числ сти экипажа и размѣрамъ отводимаго при постройкѣ к бля помѣщенія. Въ нѣк рыхъ иностр. флотахъ нормой признается 1… … Военная энциклопедия

    МЕХАНИЗМЫ СУДОВЫЕ - Происхождение: греч. mechane орудие, машина машины, механизмы и аппараты, применяемые на судах для обеспечения движения судна, живучести, обитаемости, грузовых, швартовных и других операций, связанных с использованием судна по назначению и его… … Морской энциклопедический справочник

Санкт - Петербургский Государственный Морской Технический Университет

Кафедра Силовых Энергетических Установок, Систем и Оборудования

Курсовой проект

Судовые гидравлические машины

Выполнил:

студент группы 2331

Мазилевский И.И.

Проверил:

Гришин Б. В.

Санкт – Петербург

Введение 3стр.

1 Расчет рабочего центробежного насоса с цилиндрическими лопастями по струйной

теории 3стр.

1.1 Исходные данные 3 стр.

1.2 Определение параметров рабочего колеса 3 стр.

1.3 Расчет основных размеров входа рабочего колеса 4 стр.

1.4 Расчет основных размеров выхода рабочего колеса 6 стр.

1.5 Расчёт и построение меридианного сечения колеса 8 стр.

1.6 Расчёт и построение цилиндрической лопасти рабочего колеса в плане 9 стр.

1.7 Проверочный расчёт на кавитацию 12 стр.

Введение

Центробежные насосы составляют весьма обширный класс насосов. Перекачивание жидкости или создание давления производится в центробежных насосах вращением одного или нескольких рабочих колес. Большое число разнообразных типов центробежных насосов, изготовляемых для различных целей, может быть сведено к небольшому числу основных их типов, разница в конструктивной разработке которых продиктована в основном особенностями использования насосов. В результате воздействия рабочего колеса жидкость выходит из него с более высоким давлением и большей скоростью, чем при входе. Выходная скорость преобразуется в корпусе центробежного насоса в давление перед выходом жидкости из насоса. Преобразование скоростного напора в пьезометрический частично осуществляется в спиральном отводе или направляющем аппарате. Несмотря на то, что жидкость поступает из колеса в канал спирального отвода с постепенно возрастающими сечениями, преобразование скоростного напора в пьезометрический осуществляется главным образом в коническом напорном патрубке. Если жидкость из колеса попадает в каналы направляющего аппарата, то большая часть указанного преобразования происходит в этих каналах. Направляющий аппарат был введен в конструкцию насосов на основании опыта работы гидравлических турбин, где наличие направляющего аппарата является обязательным. Насосы ранних конструкций с направляющим аппаратом назывались турбонасосами.

Наиболее распространенным типом центробежных насосов являются одноступенчатые центробежные насосы с горизонтальным расположением вала и рабочим колесом одностороннего входа.

1 Расчет рабочего центробежного насоса с цилиндрическими лопастями по струйной теории

1.1 Исходные данные

Подача……………………………………………………….….Q=0,03/0,06 м/сек

Напор……………………………………………………….…...H=650/1300 Дж/кг

Давление в воздухоудалителе…………………………….…...Р=1*10 Па

Высота всасывания………………………..……………….…...h вс =-3 м

Температура жидкости…………………………………………t=15 o C

Сопротивление приёмного трубопровода………………...….= 5 Дж/кг

1.2 Определение параметров рабочего колеса

В многоступенчатом насосе параметры колеса определяются так:

Подача колеса: Q=Q, где Q=0,03м/сек

Напор колеса: H*i=H , где H=650 Дж/кг, i=1

Все колеса насоса закрепляются на одном валу и вращаются с одинаковой частотой. Максимальная величина частоты вращения ограничивается возможностью появления в насосе кавитации. Величина максимальной частоты вращения определяется следующим образом:

g=9.81м/с- ускорение силы тяжести.

P=1*100000 Па- давление на входе.

Р=1703 Па-давление парообразования при данной температуре.

р=998,957 кг/м-плотность воды.

А=1,05….1,3-коэффициент запаса. Примем 1,134

h=5 Дж/кг- гидравлические потери в приемном водопроводе.

Подставим значения в уравнение для а затем в H:

1/1,2*((100000-1703)/ 998,957-9,81*(-3)-5)= 108,354Дж/кг

H =1/9.81*((10 5 -1703)/ 998,957-1,134*108,354-5)) = -3,000м

Принимая величину кавитационного коэффициента быстроходности С=800,находим максимальную частоту вращения:

800*(108,354)/31,15*0,03=4979,707об/мин.

Принимаем n=2930 об/мин

Чтобы найти воспользуемся формулой:

Коэффициент быстроходности для напорнопажарного насоса (50….100)

2930*0,03*20,25/650=79,830

Расчетная подача колеса определяется по уравнению:

0,03/0,915=0,032 м/сек

Примечание: Значение объемного к.п.д. ,учитывающего протечку жидкости через переднее уплотнение колеса:

Тогда объемный к.п.д.:

=-(0,03…0,05)= 0,965 -0,05=0,915.

Теоретический напор колеса определяется по уравнению:

Величину гидравлического к.п.д. можно оценить по формуле А.А.Ломакина:

Примечание: Приведенный диаметр входа в колесо определяется уравнением подобия:

3,6…6,5-выюбирается в зависимости от кавитационных качеств колеса; выберем:

Таким образом:

650/0,864=752,299Дж/кг

Механический к.п.д. определяется по уравнению:

К.П.Д., учитывающий потери энергии на трение наружной поверхности колеса о жидкость(дисковое трение), определяется по уравнению:

1/(1+820/)=0,8860;

К.П.Д., коэффициент, учитывающий потери энергии на трении в подшибниках и сальниках насоса, лежит в пределах =0,95…..0,98. Выберем =0,96

0,96*0,8860=0,8506;

К.П.Д. насоса определяется через его составляющие:

Мощность потребляемая насосом:

Электромотор: N= 30 кВт n=2930 модель: А02-72-2M, тогда

2930*0,03=79,830

1.3 Расчет основных размеров входа рабочего колеса:

Размеры входа рабочего колеса рассчитываются из условия обеспечения требуемых кавитационных качеств колеса и минимальных гидравлических потерь.

Значение скорости со входа потока в колесо оценивается по формуле С.С.Руднева:

Примечание: - принимается в зависимости от требуемых кавитационных качеств колеса и лежит в пределах 0,03..0,09 , выберем 0,040

Вал рассчитывается на прочность от кручения и изгиба и проверяется жесткость и критическую частоту вращения. В первом приближении диаметр вала рабочего колеса находится из расчета на кручение по формуле:

Крутящий момент, приложенный к валу;

Величина крутящего момента определяется по формуле:

9,57*N/n=97,9863Н*м;

Допускаемое напряжение

=(300-500)*100000 Н*м; таким образом, выберем =400*10 5

=(16*97,9863/3.14/400/100000)= 0,02319м

0,031+0,013=0,03619м;

Диаметр втулки колеса определяется конструктивно по диаметру вала в зависимости от способа крепления колеса на валу:

Диаметр D o входа на колесо находится из уравнения неразрывности:

(4*0,0328/(3,14*2,6218)+ 0,05067 2) 1/2 =0,1360м;

Ширина b 1 выходной кромки лопасти рабочего колеса и ее положение зависят от кавитационных качеств колеса и величины коэффициента быстроходности; b 1 находятся из уравнения неразрывности:

Меридианная составляющая абсолютной скорости принимает для колес со средними кавитационными качествами:

=(0,8…1,0)*=1*=2,622м/с

Колеса имеющие средние кавитационные качества (С=800) и низкую быстроходность

(=40-100), выполняются с цилиндрическими лопастями. Диаметр окружности, проходящей через средние точки выходных кромок лопастей, применяются равным:

=(0.9-1.0)*=0,95*0,131=0,1292м;

/2=0,0646м,тогда:

0,0328/2/0,0646/3,14/2,622=0,0308м.

Выходная кромка лопасти располагается параллельно оси колеса или под углом к 15-30 градусов к оси. Меридианная составляющая абсолютная скорости после поступления потока в межлопастной канал(т.е с учетом стеснения) определяется по уравнению:

1,015*5,234=5,312 м/с, где:

1,05-1,015-коэффициент стеснения на входе, выберем =1,1;

Окружная скорость на входе в межлопастной канал определяется по уравнению:

0,0646*306,67333 =19,811м/с

Угловая скорость

3,14*2930/30=306,673рад/с;

Угол безударного поступления потока на лопасти находится из уравнения:

Угол установки лопасти на входе определяется из формулы:

8,282+10=18,282 о;

Примечание:Для колес со средними кавитационными качествами принимается:

1 - угол атаки; выберем 10

Обычно =18-2;

При безотрывном обтекании лопасти поток движется по касательной к поверхности лопасти. Относительная скорость потока после поступления на лопасть направлена по касательной к средней линии профиля лопасти при входе. Величина относительной скорости определяется по уравнению:

По скоростям строят треугольники скоростей на входе в межлопастные каналы рабочего колеса и определяют скорости.(Рис 1)

Рисунок 1 Треугольник скоростей при входе в рабочее колесо насоса

1.4 Расчет основных размеров выхода рабочего колеса:

Размеры выхода рабочего колеса, основными из которых является наружный диаметр рабочего колеса, ширина лопасти на выходе определяют из условия требуемого напора при достаточно высоком КПД.

Наружный диаметр рабочего колеса находят методом последовательных приближений. В первом приближении он определяется по окружной скорости, найденной из основного уравнения лопастных машин:

Воспользуемся опытным соотношением скоростей:

0,5..0,65; Примем =0,6;

Отсюда или и того:

=(752,299/0,6) 0,5 =35,409м/с;

Определяем наружный диаметр рабочего колеса в первом приближении:

Из треугольников скоростей на входе и на выходе из межлопастных каналов следует:

Коэффициент стеснения на входе из колеса, принимается равным 1,0..1,05. Для снижения гидравлических потерь в насосе выходную кромку лопасти стремятся плавно заострить, т.е. =1,0. Для увеличения прочности лопасти можно выполнять конечной толщины, т.е. с - меридианная составляющая абсолютной скорости, выбирается в пределах (0,7…1,15)* для колес со средним кавитационными качествами =1,0;