Расходомеры переменного перепада давления. Измерение расхода по перепаду давлений на сужающем устройстве Задание на курсовую работу по дисциплине «Управление, сертификация и инноватика» на тему: «Расчет измерительного устройства расхода среды»

Введение

Автоматизация технологических процессов является одним из решающих факторов повышения производительности и улучшения условий труда. Все существующие и строящиеся промышленные объекты в той или иной степени оснащаются средствами автоматизации.

Проектами наиболее сложных производств, особенно в чёрной металлургии, нефтепереработке, химии и нефтехимии, на объектах производства минеральных удобрений, энергетики и в других отраслях промышленности, предусматривается комплексная автоматизация ряда технологических процессов.

Средства автоматизации применяются также на объектах жилищного строительства и социально-бытового назначения в системах кондиционирования воздуха, дымоудаления, энергоснабжения.

Автоматизация технологического процесса в деревообработке, является также перспективной. Например, автоматизация сушильной камеры, где качество изделия зависит от точного и своевременного регулирования основных параметров.

Задание на курсовое проектирование

Дана лесосушильная камера периодического действия , загружаемая материалом, который перемещается вилочным погрузчиком. Процесс сушки в ней протекает переодично.

Для расчёта САР регулируемым параметром служит температура сушильного агента давление пара.

Статические и динамические характеристики объекта автоматизации

Для заданного объекта необходимо:

    Разработать функциональную схему автоматизации, выбрать приборы и средства автоматизации, составить спецификации на приборы и средства автоматизации.

    Произвести инженерный расчёт системы автоматического регулирования для заданного параметра.

    Разработать принципиальную схему автоматического регулирования для заданного параметра

    Разработать общий вид щита

    Разработать принципиальную схему питания с расчётом и выбором аппаратов управления и защиты.

Функциональная схема автоматизации

При проектировании систем автоматизации технологических процессов в лесной и деревообрабатывающей промышленности все технические решения по автоматизации станков, агрегатов или отдельных участков технологического процесса отображается на схемах автоматизации.

Схемы автоматизации являются основным техническим документом, который определяет структуру и функциональные связи между технологическим процессом, приборами, средствами контроля и управления и отражает характер автоматизации технологических процессов.

При разработке схем автоматизации технологических процессов необходимо решить следующие основные задачи:

    сбор и первичная обработка информации;

    представление информации диспетчеру;

    контроль отклонений технологических параметров;

    автоматическое и дистанционное управление;

Расчёт сужающего устройства.

Данные для расчета сужающего устройства.

Внутренний диаметр трубопровода D 20 , мм

Абсолютное давление p, МПа

Массовый максимальный расход пара, Q м max , кг/ч

Материал диафрагмы

До диафрагмы имеется

Смешив. потоки

Материал трубопровода

Температура пара t, °C

Средний расход пара Q ср (0,5¸0,7)Q м. max = 0,68Q м. max , кг/ч

Минимальный расход Q min =(0,25¸0,33)Q м = 0,31 Q м кг/ч

Допустимая потеря давления р` п.д.. = (0,05¸0,1)р = 0,085 р, кПа

2. Динамическая вязкость пара:

    Поправочный множитель на расширение металла К t:

Внутренний диаметр трубопровода: D = D 20 К t = 150 1,0029 = 150,435 мм

    В зависимости от максимального контролируемого расхода пара Q м max выбирается ближайшее большее число из чисел ряда Q пр:

Q м max = 7000 Þ Q пр = 8000 кг/ч

Выбранное число является верхним пределом измерения по шкале дифманометра-расходомера или измерительного прибора:

    Определяем расчётную допустимую потерю давления:

р` п.д. = 0,085 × 0,784 =0,067 МПа = 67 кПа

    Определим вспомогательную величину:

    По вычисленному значению С и заданной величине р п.д найдём по номограмме искомое значение Dр н и приближённое значение m:

Dр н = 100 кПа

Re гр сопла = 10,5 · 10 4

    Определим поправочный множитель e на расширение пара по номограмме представленной в методическом пособии:

;

10. Вычисляем вспомогательную величину ma:

11. Определяем модуль m и коэффициент расхода a по величине ma:

12. Определяем потерю давления на диафрагме по формуле:

    Определяем по найденному значению m расчётный диаметр отверстия сужающего устройства в рабочих условиях:

    По найденному размеру d с учётом коэффициента линейного расширения материала диафрагмы Kt:

    Производится проверка расчёта:

    Определяем погрешность расчёта:

Необходимо внести исправления в расчёт, т. к. δ > 0,2 %. Принимаем внутренний диаметр трубопровода d = 73 мм и повторяем расчёт:

Расчёт и выбор регулирующего органа.

Регулирующие органы являются основной частью регуляторов. Они предназначены для изменения расхода вещества, отводимого или подводимого к объекту регулирования. РО представляют собой переменные гидравлические сопротивления, устанавливаемые в трубопроводе. Дросселирование протекающего потока осуществляется при изменении проходного сечения дроссельного органа с помощью затвора. Регулирующие клапаны работают нормально, если пределы регулирования составляют от 10% до 90% от значения коэффициента пропускной спосоности клапана. Чем больше рабочий ход затвора, тем более плавно происходит регулирование.

Исходные данные для расчёта

Внутренний диаметр паропровода D, мм

Абсолютное давление пара на входе р 0 , кПа

Максимальный расход пара G макс. , кг/ч

Длина трубопровода до РО, L1, м

Местные сопротивления до РО:

Резкие повороты (n1 поворотов под углом a)

Конфузор под углом

Минимальный расход пара G мин, кг/ч

Длина паропровода после РО, L2, м

Абсолютное давление на выходе р к, кПа

Трубы паропровода – Сварные с коррозией

Давление р 2 после РО: р 2 = р 1 -(0,3¸0,4) (р 0 -р) = р 1 -0,32(р 0 -р);

    Расчёт плотности перегретого пара по таблице представленной в методическом пособии:

ρ = 3,756 кг/м 3

Динамическая вязкость пара:

    Определим число Рейнольдса, отнесённое к диаметру трубопровода при G min . Расчёт можно продолжить при условии Rе ³ 2000.

    Определим коэффициент трения l для данного R e:

    Определим суммарную длину трубопровода:

    Определим среднюю скорость в паропроводе при G max:

    Определим потери давления на трение в кПа в прямых участках паропровода при G max:

    Определяем потери давления в местных сопротивлениях при G max.

Стандартные сужающие устройства могут применяться в комплекте с дифманометрами для измерения расхода и количества жидкостей, газов и пара в круглых трубопроводах (при любом их расположении).

При необходимости использования сужающих устройств на трубопроводах малого диаметра они должны подвергаться индивидуальной градуировке, т.е.

Экспериментальному определению зависимости

Самыми распространенными являются восемь вариантов типов СУ: диафрагмы с угловым, фланцевым и трехрадиусным способами отбора давления, сопла ИСА 1932, трубы Вентури с обработанной и необработанной конической частью короткие и длинные, сопла Вентури короткие и длинные. Стандартные диафрагмы применяются при соблюдении условия 0,2 и сопла Вен-

тури - при. Конкретный тип сужающего устройства выбирается при расчете в зависимости от условий применения, требуемой точности, допустимой потери давления.

Для соблюдения геометрического подобия СУ должны быть изго­товлены в соответствии с требованиями применительно к наиболее распространенным сужающим устройствам - диафрагмам, изображенным на рис. 12.4. Торцы диафрагмы должны быть плоскими и параллельными друг другу. Шероховатость торца в пределах D должна быть не более, выходной торец должен иметь шероховатость в пределах 0,01 мм. Если диафрагма служит для измерения расхода потока в обоих направлениях, то оба торца должны обрабатываться с шероховатостью не более, коническое расширение в этом случае отсутствует и кромки с обоих сторон должны быть острыми с радиусом закругления не более 0,05 мм. Если радиус закругления не превышает 0,0004d, то поправочный множитель на неостроту входной кромки принимается равным единице. Примм это условие выполняется. Шероховатость поверхности отверстия не должна превышать

Рис. 12.4. Способы отбора давления:

а - через отдельные отверстия; б - из кольцевых камер (угловые методы); в - через отверстия во фланцах (фланцевый метод при l1 = l2 = 25,4 мм, трехрадиусный - при l1 = D и l2 = 0,5D)

Толщина диафрагмы Е должна находиться в пределах до 0,05D, толщина определяется из условия отсутствия деформации под воздействием Δpв при известном пределе текучести материала. Если действительная толщина диафрагмы меньше расчетной, то к погрешности определения коэффициента истечения (12.18) добавляется погрешность δЕ.

Длина цилиндрической части отверстия диафрагмы должна находиться в пределах от 0,005D до 0,02D если толщина превышает последнюю цифру, то со стороны выходного торца делается коническая поверхность с углом конусности 45 ± 15°.

Отбор давлений р1 и р2 при угловом способе осуществляется либо через отдельные цилиндрические отверстия (рис. 12.4, а), либо из двух кольцевых камер, каждая из которых соединяется с внутренней полостью трубопровода кольцевой щелью или группой равномерно распределенных по окружности отверстий (рис. 12.4, б). Конструкция отборных устройств для диафрагм и сопл одинакова. Сужающие устройства с кольцевыми камерами более удобны в эксплуатации, особенно при наличии местных возмущений потока, так как кольцевые камеры обеспечивают выравнивание давления по окружности трубы, что позволяет более точно измерять перепад давления при сокращенных прямых участках трубопровода

При фланцевом и трехрадиусном способах отбора давления перепад измеряется через отдельные цилиндрические отверстия, расположенные на расстоянии в первом случае
мм, а во второмот плоскостей диафрагмы (рис. 12.4, в). Коэффициент истечения С зависит от способа отбора давления.

При установке сужающих устройств необходимо соблюдать ряд условий, влияющих на погрешность измерений.

Сужающее устройство в трубопроводе должно располагаться перпендикулярно оси трубопровода. Для диафрагм неперпендикулярность не должна превышать 1°. Ось сужающего устройства должна совпадать с осью трубопровода. Смещение оси отверстия сужающего устройства относительно оси трубопровода не должно превышатьЕсли смещение оси превышает указанное значение, но менее, то к погрешности коэффициента истечения в (12.18) прибавляют δех = 0,3%. Если смещение оси превышает указанное предельное значение, то установка СУ не допускается.

Участок трубопровода длиной 2D до и после сужающего устройства должен быть цилиндрическим, гладким, на нем не должно быть никаких уступов, а также заметных глазу наростов и неровностей от заклепок, сварочных швов и т.п. Трубопровод считается цилиндрическим, если отклонение диаметра не превышаетот его среднего значения. В противном случае, если на расстоянии lh до СУ высота уступа h удовлетворяет двум условиям

то к погрешности коэффициента истечения прибавляют δh = 0,2%.

Важным условием является необходимость обеспечения установившегося течения потока перед входом в сужающее устройство и после него. Такой поток обеспечивается наличием прямых участков трубопровода определенной длины до и после сужающего устройства. На этих участках не должны устанавливаться никакие устройства, которые могут исказить гидродинамику потока на входе или выходе сужающего устройства. Длина этих участков должна быть такой, чтобы искажения потока, вносимые коленами, вентилями, тройниками, смогли сгладиться до подхода потока к сужающему устройству. При этом необходимо иметь в виду, что более существенное значение имеют искажения потока перед сужающим устройством и значительно меньшее - за ним, поэтому задвижки

Таблица 12.2

Наименьшие относительные длины линейного участка до диафрагмы

Наименование местного сопротивления Коэффициенты Р
ак К ск 0,2 0,3 0,4 0,5 0,6 0,7 0,75 0,8
1 Задвижка, равнопроходный шаровой кран 11,5 82 6,7 12 12 12 13 15 19 24 30
2 Пробковый кран 14,5 30,5 2,0 16 18 20 23 26 30 И 34
3 Запорный кран, вентиль 17,5 64,5 4,1 18 18 19 22 26 а 38 44
4 Заслонка 21,0 38,5 1,4 25 29 32 36 40 45 4/ 50
5 Конфузор 5,0 114 6,8 5 5 6 6 У 16 11 зи
6 Симметричное резкое сужение 30,0 0,0 0,0 30 30 30 30 30 30 30 30
7 Диффузор 16,0 185 7,2 16 16 17 18 21 31 40 Э4
8 Симметричное резкое расширение 47,5 54,5 1,8 51 54 58 64 70 77 80 84
9 Одиночное колено 10,0 113 5,2 10 11 11 14 18 28 36 46

и вентили, особенно регулирующие, рекомендуется устанавливать после СУ. Длина Lк прямого участка перед сужающим устройством зависит от относительного диаметра β, диаметра трубопровода D и вида местного сопротивления, расположенного до прямого участка,

Постоянные коэффициенты, зависящие от вида местного сопротивления. Их величина и наименьшие значения Lк1/D для девяти типов местных сопротивлений приведены в табл. 12.2.

Так, для вида местного сопротивления «Задвижка, полнопроходной шаровой кран» при, приДлина прямого участка L2 после сужающего устройства зависит только от числа Дляи при = 0,8, Допускается уменьшение длины прямых участков перед СУ до величины, вызывающей дополнительную погрешность δL, которая не превысит ±1%. Погрешность суммируется со значением δс0 и рассчитывается по формуле

где отношение действительной длины прямого участка к расчетной. Погрешность всоответствует

Допускается сокращение длины линейного участка после СУ вдвое, но при этом дополнительная погрешность к коэффициенту истечения составит

Необходимо, чтобы контролируемая среда заполняла все поперечное сечение трубопровода, причем фазовое состояние вещества не должно изменяться при прохождении через сужающее устройство. Конденсат, пыль, газы или осадки, выделяющиеся из контролируемой среды, не должны скапливаться вблизи сужающего устройства.

Дифманометр подключается к сужающему устройству двумя соединительными линиями (импульсными трубками) внутренним диаметром не менее 8 мм. Допускается длина соединительных линий до 50 м, однако из-за возможности возникновения большой динамической погрешности не рекомендуется использовать линии длиной более 15 м.

Для правильного измерения расхода перепад давления на входе дифманометра должен быть равен перепаду давления, развиваемому сужающим устройством, т.е. перепад от сужающего устройства к дифманометру должен передаваться без искажения.

Это возможно в случае, если давление, создаваемое столбом среды в обеих соединительных трубках, будет одинаковым. В реальных условиях это равенство может нарушаться. Например, при измерении расхода газа причиной этого может быть скапливание конденсата в неодинаковом количестве в соединительных линиях, а при измерении расхода жидкости, наоборот, скапливание выделяющихся газовых пузырьков. Во избежание этого соединительные линии должны быть либо вертикальными, либо наклонными с уклоном не менее 1:10, причем на концах наклонных участков должны быть конденсато- или газосборники. Кроме того, обе импульсные трубки следует располагать рядом, чтобы избежать неодинакового нагрева или охлаждения их, что может привести к неодинаковой плотности заполняющей их жидкости и, следовательно, к дополнительной погрешности. При измерении расхода пара важно обеспечить равенство и постоянство уровней конденсата в обеих импульсных трубках, что достигается применением уравнительных сосудов.

К одному сужающему устройству может быть подключено несколько дифманометров. При этом допускается подключение соединительных линий одного дифманометра к соединительным линиям другого.

При измерении расхода жидкости дифманометр рекомендуется устанавливать ниже сужающего устройства 1, что исключает попадание в соединительные линии и дифманометр газа, который может выделиться из протекающей жидкости (рис. 12.5, а).

Рис. 12.5. Схема соединительных линий при измерении расхода жидкости с установкой дифматометра ниже (и) и выше (б) сужающего устройства:

1 - сужающее устройство; 2 - запорные вентили; 3 - продувочный вентиль; 4 - газосборники;

5 - разделительные сосуды

Для горизонтальных и наклонных трубопроводов соединительные линии должны подключаться через запорные вентили 2 к нижней половине трубы (но не в самой нижней части) во избежание попадания в линии газа или осадков из трубопровода. Если дифманометр все же устанавливается выше сужающего устройства (рис. 12.5, б), то в наивысших точках соединительных линий необходимо устанавливать газосборники 4 с продувочными вентилями. Если соединительная линия состоит из отдельных участков (например, при обходе какого-либо препятствия), то газосборники устанавливаются в наивысшей точке каждого участка. При установке дифманометра выше сужающего устройства трубки вблизи последнего прокладываются с U-образ­ным изгибом, опускающимся ниже трубопровода не менее чем на 0,7 м для уменьшения возможности попадания газа из трубы в соединительные линии. Продувка соединительных линий осуществляется через вентили 3.

При измерении расхода агрессивных сред в соединительных линиях возможно ближе к сужающему устройству устанавливаются разделительные сосуды 5. Соединительные линии между разделительным сосудом и дифманометром, частично и сам сосуд заполнены нейтральной жидкостью, плотность которой больше плотности измеряемой агрессивной среды. Остальная часть сосуда и линии до сужающего устройства заполнены контролируемой средой. Следовательно, поверхность раздела контролируемой среды и разделитель­ной жидкости находится внутри сосуда, причем уровни раздела в обоих сосудах должны быть одинаковыми.

Разделительная жидкость выбирается таким образом, чтобы она химически не взаимодействовала с контролируемой средой, не смешивалась с ней, не давала отложений и не была агрессивной по отношению к материалу сосудов, соединительных линий и дифманометра. Чаще всего в качестве разделительной жидкости используются вода, минеральные масла, глицерин, водоглицериновые смеси.

При измерении расхода газа дифманометр рекомендуется устанавливать выше сужающего устройства, чтобы конденсат, образовавшийся в соединительных линиях, мог стекать в трубопровод (рис. 12.6, а). Соединительные линии нужно подключать через запорные вентили 2 к верхней половине сужающего устройства, их прокладку желательно производить вертикально. Если вертикальная прокладка соединительных линий невозможна, то их следует прокладывать с наклоном в сторону трубопровода или конденсатосборников 4. Подобные требования должны выполняться и при расположении дифманометра ниже сужающего устройства (рис. 12.6, б). При измерении расхода агрессивного газа в соединительные линии должны включаться разделительные сосуды.

Рис. 12.6. Схема соединительных линий при измерении расхода газа с установкой дифманометра выше (я) и ниже (б) сужающего устройства:

1 - сужающее устройство; 2 - запорные вентили; 3 - проду­вочный вентиль; 4 - конденсатосборник

Рис. 12.7. Схема, поясняющая назначение уравнительных конденсационных сосудов при измерении расхода пара:

а-в - стадии измерения разности давлений

При измерении расхода перегретого водяного пара неизолированные соединительные линии оказываются заполненными конденсатом. Уровень конденсата и его температура в обеих линиях должны быть одинаковыми при любом расходе.

Для стабилизации верхних уровней конденсата в обеих соединительных линиях вблизи сужающего устройства устанавливаются уравнительные конденсационные сосуды. Назначение уравнительных сосудов можно пояснить с помощью рис. 12.7. Предположим, что при отсутствии уравнительных сосудов и некотором расходе пара уровень конденсата в обеих импульсных трубках одинаков. При увеличении расхода на сужающем устройстве увеличивается перепад давления, заставляющий нижнюю мембранную коробку сжиматься, а верхнюю растягиваться (рис. 12.7, б). Из-за изменения объемов коробок в нижнюю, «плюсовую» камеру дифманометра будет затекать конденсат из «плюсовой» импульсной трубки, что приведет к понижению уровня в ней на величину h. Из верхней, «минусовой» камеры дифманометра конденсат будет выталкиваться в импульсную трубку и в паропровод, но высота столба конденсата останется неизменной. Образовавшаяся разница уровней конденсата создает перепад давления hρg, уменьшающий перепад давления в сужающем устройстве. Таким образом, на дифманометр будет действовать перепад, т.е. показания расходомера будут заниженными. Нетрудно заметить, что абсолютная погрешность измерения будет расти с увеличением изменений расхода.

Очевидно, что погрешность можно снизить уменьшением h. Для этого на концах импульсных трубок устанавливают уравнительные конденсационные сосуды (рис. 12.8) - горизонтально расположенные цилиндры большого сечения. Так как сечение этих сосудов велико, вытекание из них конденсата мало изменит его уровень, так что перепад Δpд, измеряемый дифманометром, можно считать равным перепаду в сужающем устройстве.

Рис. 12.8. Схема соединительных линий при измерении расхода пара с установкой дифманометра ниже (а) и выше (б) сужающего устройства:

1 - сужающее устройство; 2 - уравнительные сосуды; 3, 4 - запорные и продувочные вентили;

Расходомеры переменного перепада состоят из устройств, образующих местное сужение в трубопроводе (сужающие устройства) и дифференциальных манометров перепада давления.

Принцип действия сужающих устройств заключается в следующем: при протекании потока жидкости, газа или пара в суженном сечении трубопровода часть потенциальной энергии давления переходит в кинетическую. Средняя скорость потока увеличивается, в результате чего в сужающем устройстве создается перепад давления, величина которого зависит от расхода вещества.

Сужающие устройства подразделяются на две группы: нормализованные и ненормализованные. К первой группе относятся диафрагмы, сопла, трубы Вентури. Диафрагмы и сопла устанавливают в трубопроводах круглого сечения диаметром не менее 50 мм, а трубу Вентури — в трубопроводе диаметром не менее 100 мм.

Ко второй группе сужающих устройств относятся сдвоенные диафрагмы, сопла с профилем размером 1/4 круга и другие устройства, которые применяют для измерения расхода вязких жидкостей при малых диаметрах трубопроводов.

Диафрагмы (рис. 31) бывают камерные А — отбор импульсов давления при помощи кольцевых камер и бескамерные Б — отбор импульсов давления при помощи отверстий (табл. 13). Толщина диска диафрагмы должна быть менее 0,1 D (D — диаметр условного прохода трубопровода).

Камерные диафрагмы состоят из диска, прокладки и двух кольцевых камер. Кольцевые камеры измеряют давление до и после диафрагмы. Толщина диска равна 3 мм для трубопроводов диаметром D < 150 мм и 6 мм для трубопроводов диаметром 150 < D < 400 мм.

Сопла могут применяться для труб диаметром не менее 50 мм. Схема сопла представлена на рис. 32. Верхняя часть соответствует отбору импульсов давления при помощи кольцевой камеры, нижняя — отбор производится при помощи отверстий. Выпускают их малыми сериями.

Труба Вентури имеет постепенно сужающееся сечение, которое затем расширяется до первоначального размера. Вследствие такой формы потери давления в ней меньше, чем в диафрагмах и соплах. Труба Вентури состоит из входного и выходного конусов и цилиндрической средней части (рис. 33).

Труба Вентури называется длинной, если диаметр выходного конуса равен диаметру трубопровода, и короткой, если он меньше диаметра трубопровода.

Сужающие устройства — простые дешевые надежные средства измерения расхода. Градуировочная характеристика стандартных сужающих устройств может быть определена расчетным путем, поэтому отпадает необходимость в образцовых расходомерах. Сужающее устройство является индивидуальным для каждого расходомера.

Из перечисленных сужающих устройств наибольшее применение нашли диафрагмы, поэтому приведем примеры расчета диафрагмы для измерения расхода воды и влажного воздуха (газа).

Расчет сужающего устройства заключается в определении размеров его проходного отверстия.

1. Находим произведение коэффициента расхода а на отношение площади проходного сечения диафрагм к площади трубопровода а:

2. Рассчитываем критерии Рейнольдса, соответствующие расчетному и минимальному расходам:

3. По произведению ста с помощью графика (рис. 34) определяем значение а и а:

4. Рассчитываем потери давления от установки диафрагмы

Фактические потери давления от установки диафрагмы меньше допустимого значения.

  1. Определяем диаметр прохода диафрагмы при рабочей температуре:

6. Находим диаметр прохода при температуре 20 °С:

7. Проверяем расчет по формуле:

1. Определяем плотность влажного воздуха:

2. Находим ориентировочное значение произведения ста, приняв коэффициент расширения е = 1:

  1. Рассчитываем критерий Рейнольдса для расчетного и минимального расходов воздуха:
  2. По графику (см. рис. 34) определяем ориентировочные значения а и а. Они равны соответственно 0,445 и 0,673.
  3. Находим значение коэффициента расширения е по графику (рис. 36) - е = 0,975.
  4. Уточняем значение произведения а а 8 = 0,292 . 0,975 = 0,287.
  1. По уточненному произведению а а 8 определяем а и а (см. рис. 34):

Полученное значение меньше допустимого.

  1. Рассчитываем потери давления от сужающего устройства (см. рис. 35): AP d = 55 %;

10. Проверяем расчет по формуле

Однотипные по устройству дифференциальные манометры и вторичные приборы могут быть использованы для различных условий измерения.

Расходомеры с сужающими устройствами универсальны, они применяются для измерения расхода практически любых однофазных (иногда и двухфазных) сред в широком диапазоне давлений, температур, диаметров трубопроводов.

Для получения сравнимых результатов измерений объемный расход газа или пара приводят к стандартным условиям.

Приборы, измеряющие расход вещества, называют расходомерами. Приборы, измеряющие количество вещества, протекающее через данное сечение трубопровода за некоторый промежуток времени, называют счетчиками количества. При этом количество вещества определяется как разность двух последовательных показаний счетчика в начале и конце этого промежутка времени. Показания счетчика выражаются в единицах объема, реже — в единицах массы. Прибор, одновременно измеряющий расход и количество вещества, называют расходомером со счетчиком. Расходомер измеряет текущее значение расхода, а счетчик выполняет интегрирование текущих значений расхода.

В последнее время граница между счетчиками и расходомерами практически исчезает. Расходомеры оснащают средствами для определения количества жидкости или газа, а счетчики — средствами для определения расхода, что позволяет объединить счетчики и расходомеры в одну группу приборов — расходомеры.

Устройство (диафрагма, сопло, напорная трубка), непосредственно воспринимающее измеряемый расход и преобразующее его в другую величину, удобную для измерения (например, в перепад давления), называют преобразователем расхода.

Принцип действия расходомеров этой группы основан на зависимости перепада давления, создаваемого неподвижным устройством, устанавливаемым в трубопроводе, от расхода вещества.

При измерении расхода методом переменного перепада давления в трубопроводе, по которому протекает среда, устанавливают сужающее устройство (СУ), создающее местное сужение потока. Из-за перехода части потенциальной энергии потока в кинетическую средняя скорость потока в суженном сечении повышается. В результате статическое давление в этом сечении становится меньше статического давления перед СУ. Разность этих давлений тем больше, чем больше расход протекающей среды, и, следовательно, она может служить мерой расхода. Перепад давления на СУ (рис. 78, а) равен

где — давление на входе в сужающее устройство; — давление на выходе из него.

Измерение расхода вещества методом переменного перепада давления возможно при соблюдении условий:

1) поток вещества заполняет все поперечное сечение трубопровода;

2) поток вещества в трубопроводе является практически установившимся;

3) фазовое состояние вещества, протекающего через СУ, не изменяется (жидкость не испаряется; газы, растворенные в жидкости, не десорбируются; пар не конденсируется).

Рис. 5.78. Расходомеры переменного перепада давления:


а — структура потока проходящего через диафрагму; б — распределение статического давления р вблизи диафрагмы по длине трубопровода; / — сужающее устройство (диафрагма); 2 — импульсные трубки; 3 — -образный дифманометр; — сечение потока вещества, в котором не сказывается возмущающее воздействие диафрагмы; — сечение потока вещества в месте его наибольшего сжатия; в — сопло; г — сопло Вентури

В качестве сужающих устройств для измерения расхода жидкостей, газов, пара широко применяются стандартные сужающие устройства. К ним относят стандартную диафрагму, сопло ИСА 1932, трубу Вентури и сопло Вентури.

Сопло ИСА 1932 (далее — сопло) — СУ с круглым отверстием, имеющее на входе плавно сужающийся участок с профилем, образованным двумя сопрягающимися дугами, переходящий в цилиндрический участок на выходе, называемый горловиной (рис. 78, в).

Расходомерная труба Вентури (далее — труба Вентури) — СУ с круглым отверстием, имеющее на входе конический сужающийся участок, переходящий в цилиндрический участок, соединенный на выходе с расширяющейся конической частью, называемой диффузором.

Вентури — труба Вентури с сужающимся входным участком в виде сопла ИСА 1932 (рис. 78, г).

Эти наиболее изученные средства измерения расхода и количества жидкостей, газа и пара могут применяться при любых давлениях и температурах измеряемой среды.

Установим диафрагму в трубопроводе так, чтобы центр ее отверстия находился на оси трубопровода (рис. 78, а). Сужение потока вещества начинается до диафрагмы, на некотором расстоянии за диафрагмой поток достигает своего минимального сечения. Затем поток постепенно расширяется до полного сечения. На рис. 78, б изображено распределение давлений вдоль стенки трубопровода (сплошная линия), а также распределение давлений по оси трубопровода (штрихпунктирная линия). Давление потока около стенок трубопровода после СУ не достигает своего прежнего значения на величину — безвозвратной потери, обусловленной завихрениями, ударом и трением (затрачивается значительная часть энергии).

Отбор статических давлений и возможен с помощью соединительных импульсных трубок 2, вставленных в отверстия, расположенные до и после диафрагмы / (рис. 78, а), а измерение перепада давления возможно с помощью какого-нибудь измерителя перепада давления (в данном случае -образного дифманометра 3).

Сопло (рис. 78, в) конструктивно изготовляется в виде насадки с круглым концентрическим отверстием, имеющим плавно сужающуюся часть на входе и развитую часть на выходе. Профиль сопла обеспечивает практически полное сжатие потока вещества и поэтому площадь цилиндрического отверстия сопла может быть принята равной минимальному сечению потока, т. е. . Характер распределения статического давления в сопле по длине трубопровода такой же, как и у диафрагмы. Такой же и отбор давлений и до и после сопла, как и у диафрагмы.

Сопло Вентури (рис. 78, г) конструктивно состоит из цилиндрического входного участка; плавно сужающейся части, переходящей в короткий цилиндрический участок; из расширяющейся конической части — диффузора. Сопло Вентури благодаря диффузору обладает меньшей потерей давления, чем диафрагма и сопло. Характер распределения статического давления в сопле Вентури по длине трубопровода такой же, как и у диафрагмы и сопла. Отбор давлений и осуществляется с помощью двух кольцевых камер, каждая из которых соединяется с внутренней полостью сопла Вентури группой равномерно расположенных по окружности отверстий.

Теперь уравнение объемного расхода для несжимаемой жидкости принимает вид:

С учетом введения поправочного коэффициента е, учитывающего расширение измеряемой среды, окончательно перепишем уравнение:

Для несжимаемой жидкости поправочный коэффициент е равен единице, при измерении расхода сжимаемых сред (газа, пара) поправочный коэффициент и определяется по специальным номограммам.

Стандартные сужающие устройства могут применяться в комплекте с дифманометрами для измерения расхода и количества жидкостей, газов и пара в круглых трубопроводах (при любом их расположении), если их расчет, изготовление и установка выполнены в соответствии с ГОСТ 8.563.1-97 .

При необходимости использования сужающих устройств на трубопроводах меньшего диаметра они должны подвергаться индивидуальной градуировке, т.е. экспериментальному определению зависимости G =f(Δp).

В ГОСТ 8.563.1-97 даются восемь вариантов типов сужающих устройств: диафрагмы с угловым, фланцевым и трехрадиусным способами отбора давления, сопла ИСА 1932, трубы Вентури с обработанной и необработанной конической частью короткие и длинные, сопла Вентури короткие и длинные. Стандартные диафрагмы применяются при соблюдении условия 0,2 ≤ β ≤ 0,75, стандартные сопла - при 0,3 ≤ β ≤ 0,8 и сопла Вентури - при 0,3 ≤ β ≤ 0,75. Конкретный тип сужающего устройства выбирается при расчете в зависимости от условий применения, требуемой точности, допустимой потери давления.

Для соблюдения геометрического подобия сужающих устройств должны быть изготовлены в соответствии с требованиями ГОСТ 8.563.1-97, которые кратко рассмотрены применительно к наиболее распространенным сужающим устройствам - диафрагмам, изображенным на рис. 1. Торцы диафрагмы должны быть плоскими и параллельными друг другу. Шероховатость торца в пределах D должна быть не более 10 -4 d, выходной торец должен иметь шероховатость в пределах 0,01 мм. Если диафрагма служит для измерения расхода потока в обоих направлениях, то оба торца должны обрабатываться с шероховатостью не более 10 -4 d, коническое расширение в этом случае отсутствует и кромки с обоих сторон должны быть острыми с радиусом закругления не более 0,05 мм. Если радиус закругления не превышает 0,0004d, ТО поправочный множитель на неостроту входной кромки принимается равным единице. При d ≥ 125 мм это условие выполняется. Шероховатость поверхности отверстия не должна превышать 10 -5 d.

Толщина диафрагмы Е должна находиться в пределах до 0,05D толщина определяется из условия отсутствия деформации под воздействием Δр в при известном пределе текучести материала.

Длина цилиндрической части отверстия диафрагмы должна находиться в пределах от 0,005D до 0,02D, если толщина превышает последнюю цифру, то со стороны выходного торца делается коническая поверхность с углом конусности 45 ± 15°.

Рис. 1. :

а - через отдельные отверстия; б - из кольцевых камер (угловые методы); в - через отверстия во фланцах (фланцевый метод при l1 = l2 = 25,4 мм, трехрадиусный - при l1 = D и l2 = 0,5D)

Отбор давлений р1 и р2 при угловом способе осуществляется либо через отдельные цилиндрические отверстия (рис. 1, а), либо из двух кольцевых камер, каждая из которых соединяется с внутренней полостью трубопровода кольцевой щелью или группой равномерно распределенных по окружности отверстий (рис. 1, б). Конструкция отборных устройств для диафрагм и сопл одинакова. Сужающие устройства с кольцевыми камерами более удобны в эксплуатации, особенно при наличии местных возмущений потока, так как кольцевые камеры обеспечивают выравнивание давления по окружности трубы, что позволяет более точно измерять перепад давления при сокращенных прямых участках трубопровода.?

При фланцевом и трехрадиусном способах отбора давления перепад измеряется через отдельные цилиндрические отверстия, расположенные на расстоянии в первом случае l1 = l2 = 25,4 мм, а во втором l1 = D и l2 = 0,5D от плоскостей диафрагмы (рис. 1, в). Коэффициент истечения С зависит от способа отбора давления.

При установке сужающих устройств необходимо соблюдать ряд условий, влияющих на погрешность измерений.

Сужающее устройство в трубопроводе должно располагаться перпендикулярно оси трубопровода. Для диафрагм неперпендикулярность не должна превышать 1°. Ось сужающего устройства должна совпадать с осью трубопровода.

Участок трубопровода длиной 2D до и после сужающего устройства должен быть цилиндрическим, гладким, на нем не должно быть никаких уступов, а также заметных глазу наростов и неровностей от заклепок, сварочных швов и т.п.

Важным условием является необходимость обеспечения установившегося течения потока перед входом в сужающее устройство и после него. Такой поток обеспечивается наличием прямых участков трубопровода определенной длины до и после сужающего устройства. На этих участках не должны устанавливаться никакие устройства, которые могут исказить гидродинамику потока на входе или выходе сужающего устройства. Длина этих участков должна быть такой, чтобы искажения потока, вносимые коленами, вентилями, тройниками, смогли сгладиться до подхода потока к сужающему устройству. При этом необходимо иметь в виду, что более существенное значение имеют искажения потока перед сужающим устройством и значительно меньшее - за ним, поэтому задвижки и вентили, особенно регулирующие, рекомендуется устанавливать после СУ. Длина L K прямого участка перед сужающим устройством зависит от относительного диаметра

Диаметра трубопровода D и вида местного сопротивления, расположенного до прямого участка, L K1 /D = а к + b к ск, где а к, b к, с к - постоянные коэффициенты, зависящие от вида местного сопротивления. Их величина и наименьшие значения L K1 /D для девяти типов местных сопротивлений приведены в табл. 1.

Таблица 1. Наименьшие относительные длины линейного участка до диафрагмы

Наименование местного

сопротивления

Коэффициенты

Задвижка, равнопроходный шаровой кран

Пробковый кран

Запорный кран, вентиль

Заслонка

Конфузор

Симметричное резкое сужение

Диффузор

Симметричное резкое расширение

Одиночное колено

Допускается сокращение длины линейного участка после СУ вдвое, но при этом дополнительная погрешность к коэффициенту истечения составит ±0,5 %.

Необходимо, чтобы контролируемая среда заполняла все поперечное сечение трубопровода, причем фазовое состояние вещества не должно изменяться при прохождении через сужающее устройство. Конденсат, пыль, газы или осадки, выделяющиеся из контролируемой среды, не должны скапливаться вблизи сужающего устройства.

Дифманометр подключается к сужающему устройству двумя соединительными линиями (импульсными трубками ) внутренним диаметром не менее 8 мм. Допускается длина соединительных линий до 50 м, однако из-за возможности возникновения большой динамической погрешности не рекомендуется использовать линии длиной более 15 м.

Для правильного измерения расхода перепад давления на входе дифманометра должен быть равен перепаду давления, развиваемому сужающим устройством, т.е. перепад от сужающего устройства к дифманометру должен передаваться без искажения.

Это возможно в случае, если давление, создаваемое столбом среды в обеих соединительных трубках, будет одинаковым. В реальных условиях это равенство может нарушаться. Например, при измерении расхода газа причиной этого может быть скапливание конденсата в неодинаковом количестве в соединительных линиях, а при измерении расхода жидкости, наоборот, скапливание выделяющихся газовых пузырьков. Во избежание этого соединительные линии должны быть либо вертикальными, либо наклонными с уклоном не менее 1:10, причем на концах наклонных участков должны быть конденсато- или газосборники. Кроме того, обе импульсные трубки следует располагать рядом, чтобы избежать неодинакового нагрева или охлаждения их, что может привести к неодинаковой плотности заполняющей их жидкости и, следовательно, к дополнительной погрешности. При измерении расхода пара важно обеспечить равенство и постоянство уровней конденсата в обеих импульсных трубках, что достигается применением уравнительных сосудов.

К одному сужающему устройству может быть подключено несколько дифманометров. При этом допускается подключение соединительных линий одного дифманометра к соединительным линиям другого.

При измерении расхода жидкости дифманометр рекомендуется устанавливать ниже сужающего устройства 1, что исключает попадание в соединительные линии и дифманометр газа, который может выделиться из протекающей жидкости (рис. 2, а).



Рис. 2. Схема соединительных линий при измерении расхода жидкости с установкой дифманометра ниже (а) и выше (6) сужающего устройства :

1 - сужающее устройство; 2 - запорные вентили; 3 - продувочный вентиль; 4 - газосборники; 5 - разделительные сосуды

Для горизонтальных и наклонных трубопроводов соединительные линии должны подключаться через запорные вентили 2 к нижней половине трубы (но не в самой нижней части) во избежание попадания в линии газа или осадков из трубопровода. Если дифманометр все же устанавливается выше сужающего устройства (рис. 2, б), то в наивысших точках соединительных линий необходимо устанавливать газосборники 4 с продувочными вентилями. Если соединительная линия состоит из отдельных участков (например, при обходе какого-либо препятствия), то газосборники устанавливаются в наивысшей точке каждого участка. При установке дифманометра выше сужающего устройства трубки вблизи последнего прокладываются с Сообразным изгибом, опускающимся ниже трубопровода не менее чем на 0,7 м для уменьшения возможности попадания газа из трубы в соединительные линии. Продувка соединительных линий осуществляется через вентили 3.?

При измерении расхода агрессивных сред в соединительных линиях возможно ближе к сужающему устройству устанавливаются разделительные сосуды 5. Соединительные линии между разделительным сосудом и дифманометром, частично и сам сосуд заполнены нейтральной жидкостью, плотность которой больше плотности измеряемой агрессивной среды. Остальная часть сосуда и линии до сужающего устройства заполнены контролируемой средой. Следовательно, поверхность раздела контролируемой среды и разделительной жидкости находится внутри сосуда, причем уровни раздела в обоих сосудах должны быть одинаковыми.

Разделительная жидкость выбирается таким образом, чтобы она химически не взаимодействовала с контролируемой средой, не смешивалась с ней, не давала отложений и не была агрессивной по отношению к материалу сосудов, соединительных линий и дифманометра. Чаще всего в качестве разделительной жидкости используются вода, минеральные масла, глицерин, водоглицериновые смеси.

При измерении расхода газа дифманометр рекомендуется устанавливать выше сужающего устройства, чтобы конденсат, образовавшийся в соединительных линиях, мог стекать в трубопровод (рис. 3, а).



Рис. 3. Схема соединительных линий при измерении расхода газа с установкой дифманометра выше (а) и ниже (б) сужающего устройства :

1 - сужающее устройство; 2 - запорные вентили; 5 - продувочный вентиль; 4 - конденсатосборник

Соединительные линии нужно подключать через запорные вентили 2 к верхней половине сужающего устройства, их прокладку желательно производить вертикально. Если вертикальная прокладка соединительных линий невозможна, то их следует прокладывать с наклоном в сторону трубопровода или конденсатосборников 4. Подобные требования должны выполняться и при расположении дифманометра ниже сужающего устройства (рис. 3, б). При измерении расхода агрессивного газа в соединительные линии должны включаться разделительные сосуды.

При измерении расхода перегретого водяного пара неизолированные соединительные линии оказываются заполненными конденсатом. Уровень конденсата и его температура в обеих линиях должны быть одинаковыми при любом расходе.

Для стабилизации верхних уровней конденсата в обеих соединительных линиях вблизи сужающего устройства устанавливаются уравнительные конденсационные сосуды . Назначение уравнительных сосудов можно пояснить с помощью рис. 4.



Рис. 4. :

а-в - стадии измерения разности давлений

Предположим, что при отсутствии уравнительных сосудов и некотором расходе пара уровень конденсата в обеих импульсных трубках одинаков. При увеличении расхода на сужающем устройстве увеличивается перепад давления, заставляющий нижнюю мембранную коробку сжиматься, а верхнюю растягиваться (рис. 4, б). Из-за изменения объемов коробок в нижнюю, «плюсовую» камеру дифманометра будет затекать конденсат из «плюсовой» импульсной трубки, что приведет к понижению уровня в ней на величину h. Из верхней, «минусовой» камеры дифманометра конденсат будет выталкиваться в импульсную трубку и в паропровод, но высота столба конденсата останется неизменной. Образовавшаяся разница уровней конденсата создает перепад давления, уменьшающий перепад давления в сужающем устройстве. Таким образом, показания расходомера будут заниженными. Нетрудно заметить, что абсолютная погрешность измерения будет расти с увеличением изменений расхода.

Очевидно, что погрешность можно снизить уменьшением h. Для этого на концах импульсных трубок устанавливают уравнительные конденсационные сосуды (рис. 5) - горизонтально расположенные цилиндры большого сечения. Так как сечение этих сосудов велико, вытекание из них конденсата мало изменит его уровень, так что перепад, измеряемый дифманометром, можно считать равным перепаду в сужающем устройстве.

При измерении расхода пара дифманометр следует располагать ниже сужающего устройства 1 и уравнительных сосудов 2 (рис. 5, а) для облегчения удаления воздуха из соединительных линий.




Рис. 5. Схема соединительных линий при измерении расхода пара с установкой дифманометра ниже (а) и выше (б) сужающего устройства :

1 - сужающее устройство; 2 - уравнительные сосуды; 3, 4 - запорные и продувочные вентили; 5 - газосборник

Допускается дифманометр располагать выше сужающего устройства, но в верхней точке соединительных линий в этом случае необходимо устанавливать газосборники 5 (рис. 5, б), позиции 3,4 - запорные и продувочные вентили.