Теория графов. Основные понятия и виды графов

Учебный проект: Его высочество граф математический/

Виды графов

Плоские графы

Граф называется плоским (планарным) , если его можно уложить на плоскости так, чтобы его ребра нигде не пересекались, кроме как в вершинах. Имеется два основных непланарных графа - Г5 и Г3,3, изображение которых дано на рисунке. Оба графа Г5 и Г3,3 являются регулярными , но последний относится еще и к так называемому двудольному , который определяется здесь как многозначное отображение трех верхних вершин на три нижние вершины, или наоборот. В общем случае в двудольном графе Г3,3 число вершин в обоих рядах может быть любым.

Двудольный граф

Двудольный граф (или биграф, или чётный граф) - это граф G(V,E), такой что множество вершин V разбито на два непересекающихся подмножества V1 и V2, причём всякое ребро E инцидентно вершине из V1 и вершине из V2 (то есть соединяет вершину из V1 с вершиной из V2). То есть, правильная раскраска графа двумя цветами. Множества V1 и V2 называются «долями» двудольного графа. Двудольный граф называется «полным» , если любые две вершины из V1 и V2 являются смежными . Если |V1|=a,|V2|=b , то полный двудольный граф обозначается Ka,b.

Изоморфный граф

Изоморфизм - это очень общее понятие, которое употребляется в различных разделах математики. В общих чертах его можно описать так: Пусть даны два множества с определённой структурой (группы, кольца, линейные пространства и т. п.). Биекция между ними называется изоморфизмом, если она сохраняет эту структуру. Такие множества со структурой называются изоморфными. Изоморфизм всегда задаёт отношение эквивалентности на классе таких множеств со структурой.
Два графа G=(X,U) и L=(X",U") являются изоморфными , если между парами множеств их вершин, ребер и дуг существуют взаимно однозначные соответствия, сохраняющие смежность и ориентацию для дуг. Пример: следующие графы, приведенные на рисунке, изоморфны:

Псевдограф

Псевдограф – граф с кратными ребрами и петлями. Пример: пусть D=(V,X) – ориентированный граф, V={V1,V2},X={x1={V1,V2},x2={V1,V2],x3={V1,V2},x4={V2,V2} . Тогда D=(V,X) – ориентированный псевдограф

Мультиграф

Мультиграф – граф, в котором имеются кратные (параллельные) ребра. Мультиграф – это псевдограф без петель. Пример: пусть D=(V,X) – ориентированный граф,V={V1,V2} ,X={x1={V1,V2},x2={V1,V2}} . Тогда D=(V,X)– ориентированный мультиграф.

Теория потоков в сетях возникла из рассмотрения реальных задач, таких как перевозка грузов по системе железных дорог, перекачка нефти по трубопроводам, управление запасами и т. д. Прежде чем кратко изложить теорию потоков в сетях, приведем некоторые определения из теории графов.

Граф – это совокупность двух множеств: множества точек, которые называются вершинами , и множества ребер А . Каждый элемент есть упорядоченная пара элементов множества , вершины и называются концевыми точками или концами ребра а . Граф называется конечным , если множества R и конечны.

Это определение графа должно быть дополнено в одном важном отношении. В определении ребра можно принимать или не принимать во внимание порядок расположения двух его концов. Если этот порядок несущественен, т. е. если , то говорят, что a есть неориентированное ребро ; если же этот порядок существенен, то a называется ориентированным ребром (ориентированное ребро часто называется дугой ). В последнем случае называется также начальной вершиной , а конечной вершиной ребра a . Граф называется неориентированным , если каждое его ребро неориентировано, и ориентированным , если ориентированы все его ребра. В ряде случаев естественно рассматривать смешанные графы, имеющие как ориентированные, так и неориентированные ребра.

Ребра, имеющие одинаковые концевые вершины, называются параллельными . Ребро, концевые вершины которого совпадают, называется петлей . Она обычно считается неориентированной. Вершина и ребро называются инцидентными друг другу, если вершина является для этого ребра концевой. Вершина, не инцидентная никакому ребру, называется изолированной . Граф, состоящий только из изолированных вершин, называется нуль-графом . Две вершины, являющиеся концевыми для некоторого ребра называются смежными вершинами . Два ребра, инцидентные одной и той же вершине, называются смежными .

Число ребер, инцидентных одной вершине , будем обозначать через . Это число называется локальной степенью или просто степенью графа в вершине . В случае ориентированного графа G обозначим через и число ребер, соответственно выходящих из вершины и входящих в . Эти числа называются локальными степенями G в . Если все числа конечны, то граф называется локально-конечным . Вершина степени 1 называется висячей . Вершина степени 0 называется изолированной .

Рисунок 14.1.

На рис. 14.1 и – параллельные ребра, – петля; вершина и ребро инцидентны друг другу; – смежные вершины, – смежные вершины; степень вершины равна трем, – висячая вершина, – изолированная.

Теорема 14.1. В графе G сумма степеней всех его вершин – число четное, равное удвоенному числу ребер графа: , где n – число вершин графа, m – число его ребер.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

«В математике следует помнить не формулы, а процесс мышления…»

Е. И. Игнатьев

Теория графов в настоящее время является интенсивно развивающимся разделом математики. Это объясняется тем, что в виде графовых моделей описываются многие объекты и ситуации, что очень важно для нормального функционирования общественной жизни. Именно этот фактор определяет актуальность их более подробного изучения. Поэтому тематика данной работы достаточно актуальна.

Цель исследовательской работы: выяснить особенности применения теории графов в различных областях знаний и при решении логических задач.

Цель определила следующие задачи:

    познакомиться с историей теории графов;

    изучить основные понятия теории графов и основные характеристики графов;

    показать практическое применение теории графов в различных областях знаний;

    рассмотреть способы решения задач с помощью графов и составить собственные задачи.

Объект исследования: сфера деятельности человека на предмет применения метода графов.

Предмет исследования: раздел математики «Теория графов».

Гипотеза. Мы предполагаем, что изучение теории графов может помочь учащимся решать логические задачи по математике, что определит их дальнейшие интересы.

Методы исследовательской работы:

В ходе нашего исследования были использованы такие методы, как:

1) Работа с различными источниками информации.

2) Описание, сбор, систематизация материала.

3) Наблюдение, анализ и сравнение.

4) Составление задач.

Теоретическая и практическая значимость данной работы определяется тем, что результаты могут быть использованы на информатике, математике, геометрии, черчении и классных часах, а также для широкого круга читателей, заинтересованных данной темой. Исследовательская работа имеет выраженную практическую направленность, так как в работе автором представлены многочисленные примеры применения графов во многих областях знаний, составлены свои задачи. Данный материал можно использовать на факультативных занятиях по математике.

ГЛАВА I. ТЕОРЕТИЧЕСКИЙ ОБЗОР МАТЕРИАЛА ПО ТЕМЕ ИССЛЕДОВАНИЯ

    1. Теория графов. Основные понятия

В математике «граф» можно изобразить в виде картинки, которая представляет собой некоторое количество точек, соединенных линиями. «Граф» происходит от латинского слова «графио» - пишу, как и известный дворянский титул.

В математике определение графа дается так:

Термин «граф» в математике определяется следующим образом:

Граф - это конечное множество точек - вершин , которые могут быть соединены линиями - ребрами .

В качестве примеров графов могут выступать чертежи многоугольников, электросхемы, схематичное изображение авиалиний, метро, дорог и т.п. Генеалогическое дерево также является графом, где вершинами служат члены рода, а родственные связи выступают в качестве ребер графа.

Рис. 1 Примеры графов

Число ребер, которое принадлежит одной вершине, называется степенью вершины графа . Если степень вершины нечетное число, вершина называется - нечетной . Если степень вершины число четное, то и вершина называется четной .

Рис. 2 Вершина графа

Нуль-граф - это граф, состоящий только из изолированных вершин, не соединенных ребрами.

Полный граф - это граф, каждая пара вершин которого соединена ребром. N-угольник, в котором проведены все диагонали, может служить примеров полного графа.

Если в графе выбрать такой путь, когда начальная и конечная точка совпадают, то такой путь называется циклом графа . Если прохождение через каждую вершину графа происходит не более одного раза, то цикл называется простым .

Если в графе каждые две вершины связаны ребром, то это связанный граф. Граф называется несвязанным , если в нем есть хотя бы одна пара несвязанных вершин.

Если граф связанный, но не содержит циклов, то такой граф называетсядеревом .

    1. Характеристики графов

Путь графа - это такая последовательность, в которой каждые два соседних ребра, имеющих одну общую вершину, встречаются только один раз.

Длина кратчайшей цепи из вершин a и b называется расстоянием между вершинами a и b.

Вершина а называется центром графа, если расстояние между вершиной а и любой другой вершиной является наименьшим и из возможных. Такое расстояние есть радиус графа.

Максимально возможное расстояние между двумя любыми вершинами графа называется диаметром графа.

Раскраска графов и применение.

Если внимательно посмотреть на географическую карту, то можно увидеть железные или шоссейные дороги, которые являются графами. Кроме этого на катре есть граф, который состоит из границ между странами (районами, областями).

В 1852 году английскому студенту Френсису Гутри поставили задачу раскрасить карту Великобритани, выделив каждое графство отдельным цветом. Из-за небольшого выбора красок Гутри использовал их повторно. Он подбирал цвета так, чтобы те графства, которые имеют общий участок границы, обязательно окрашивались в разные цвета. Возник вопрос, какое наименьшее количество красок необходимо для раскрашивания различных карт. Френсис Гутри предположил, хотя и не смог доказать, что четырех цветов будет достаточно. Эта проблема бурно обсуждалась в студенческих кругах, но позже была забыта.

«Проблема четырех красок» вызывала все больший интерес, но так и не была решена, даже выдающимися математиками. В 1890 году английским математиком Перси Хивудом было доказано, что для раскрашивания любой карты будет достаточно пяти красок. А только 1968 году смогли доказать, что для раскрашивания карты, на которой изображено меньше сорока стран, будет достаточно 4 цветов.

В 1976 году эта задача была решена при использовании компьютера двумя американскими математиками Кеннетом Аппелем и Вольфгантом Хакеном. Для ее решения все карты были поделены на 2000 типов. Для компьютера была создана программа, которая исследовала все типы с целью выяления таких карт, для раскрашивания которых будет недостаточно четырех красок. Только три типа карт компьютер исследовать не смог, поэтому математики изучали их самостоятельно. В результате было установлено, что для раскрашивания всех 2000 типов карт будет достаточно 4 красок. Им было объявлено о решении проблемы четырех красок. В этот день почтовое отделение при университете, в котором работали Аппель и Хакен на всех марках ставило штемпель со словами: «Четырех красок достаточно».

Можно представить задачу о четырех красках несколько иначе.

Для этого рассмотрим произвольную карту, представив ее виде графа: столицы государств являются вершинами графа, а ребра графа связывают те вершины (столицы), государства которых имеют общую границу. Для получения такого графа формулируется следующая задача - необходимо раскрасить граф с помощью четырех цветов так, чтобы вершины, имеющие общее ребро были раскрашены разными цветами.

Эйлеровы и Гамильтоновы графы

В 1859 году английским математиком Уильямом Гамильтоном была выпущена в продажу головоломка - деревянный додекаэдр (двенадцатигранник), двадцать вершин которого были обозначены гвоздиками. Каждая вершина имела название одного из крупнейших городов мира - Кантон, Дели, Брюссель, и т.д. Задача заключалась в нахождении замкнутого пути, который проходит по ребрам многогранника, побывав в каждой вершине только один раз. Для отмечания пути использовался шнур, который цепляли за гвоздики.

Гамильтоновым циклом называется граф, путь которого является простым циклом, который проходит через все вершины графа по одному разу.

На реке Прегель расположен город Калининград (бывший Кенигсберг). Река омывала два острова, которые между собой и с берегами были соединены мостами. Старых мостов сейчас уже нет. Память о них осталась только на карте города.

Однажды один житель города спросил у своего знакомого, можно ли пройти по всем мостам, побывать на каждом только один раз и вернуться к тому месту откуда началась прогулка. Эта задача заинтересовала многих горожан, но решить ее никто не смог. Этот вопрос вызвал заинтересованность ученных многих стран. Решение проблемы получил математик Леонард Эйлер. Кроме этого он сформулировал общий подход к решению таких задач. Для этого он превратил карту в граф. Вершинами этого графа стала суша, а ребрами - мосты, ее соединяющие.

При решении задачи про мосты Кенигсберга Эйлеру удалось сформулировать свойства графов.

    Начертить граф, начав движение с одной вершины и окончив в той же вершине одним росчерком (дважды не проводя по одной и той же линии и не отрывая карандаша от бумаги) возможно в том случае, если все вершины графа четные.

    Если есть граф с двумя нечетными вершинами, то его вершины тоже можно соединить одним росчерком. Для этого нужно начать с одной, а закончить на другой любой нечетной вершине.

    Если есть граф с числом нечетных вершин больше двух, то граф невозможно начертить одним росчерком.

Если применять эти свойства на задачу о мостах, то можно увидеть, что все вершины исследуемого графа нечетные, значит, этот граф нельзя соединить одним росчерком, т.е. невозможно пройти по всем мостам один раз и закончить путь в том месте, где он был начат.

Если граф имеет цикл (не обязательно простой), содержащий все рѐбра графа по одному разу, то такой цикл называется Эйлеровым циклом . Эйлерова цепь (путь, цикл, контур) — цепь (путь, цикл, контур), содержащая все рѐбра (дуги) графа по одному разу.

ГЛАВА II. ОПИСАНИЕ ИССЛЕДОВАНИЯ И ЕГО РЕЗУЛЬТАТЫ

2.1. Этапы проведения исследования

Для проверки гипотезы исследование включало три этапа (таблица 1):

Этапы исследования

Таблица 1.

Используемые методы

Теоретическое исследование проблемы

Изучить и проанализировать познавательную и научную литературу.

 самостоятельное размышление;

 изучение информационных источников;

 поиск необходимой литературы.

Практическое исследование проблемы

Рассмотреть и проанализировать области практического применения графов;

 наблюдение;

 анализ;

 сравнение;

 анкетирование.

3 этап. Практическое использование результатов

Обобщить изученную информацию;

 систематизация;

 отчет (устный, письменный, с демонстрацией материалов)

сентябрь 2017 г.

2.2. Области практического применения графов

Графы и информация

Теория информации широко использует свойства двоичных деревьев.

Например, если нужно закодировать некоторое число сообщений в виде определенных последовательностей нулей и единиц различной длины. Код считается наилучшим, для заданной вероятности кодовых слов, если средняя длина слов наименьшая в сравнении другими распределениями вероятности. Для решения такой задачи Хаффман предложил алгоритм, в котором, код представляется деревом-графом в рамках теории поиска. Для каждой вершины предлагается вопрос, ответом на который может быть либо, «да», либо «нет» - что соответствует двум ребрам, выходящим из вершины. Построение такого дерева завершается после установления того, что требовалось. Это может применяться в интервьюировании нескольких человек, когда заранее неизвестен ответ на предыдущий вопрос, план интервью представляется в виде двоичного дерева.

Графы и химия

Еще А. Кэли рассмотрел задачу о возможных структурах насыщенных (или предельных) углеводородов, молекулы которых задаются формулой:

CnH 2n+2

Все атомы углеводорода 4-хвалентны, все атомы водорода 1-валентны. Структурные формулы простейших углеводородов показаны на рисунке.

Каждую молекулу предельного углеводорода можно представить в виде дерева. При удалении всех атомов водорода, атомы углеводорода, которые остались, образуют дерево с вершинами, степень которых не выше четырех. Значит, количество возможных искомых структур (гомологов данного вещества) равняется числу деревьев, степени вершин которых, не больше 4. Это задача сводится к задаче о перечислении деревьев отдельного вида. Д. Пойа рассмотрел эту задачу и ее обобщения.

Графы и биология

Процесс размножения бактерий - это одна из разновидностей ветвящихся процессов, встречающихся в биологической теории. Пусть каждая бактерия по истечению определенного времени или погибает, или делится на две. Следовательно, для одной бактерии мы получим двоичное дерево размножения ее потомства. Вопрос задачи заключается в следующем, какое количество случаев содержит k потомков в n-м поколение одной бактерии? Данное соотношение в биологии носит название процесс Гальтона-Ватсона, которое обозначает необходимое количество нужных случаев.

Графы и физика

Сложная утомительная задача для любого радиолюбителя - создание печатных схем (пластина диэлектрика - изолирующего материала и вытравленные дорожки в виде металлических полосок). Пересечение дорожек происходит только в определенных точках (местах установления триодов, резисторов, диодов и пр.) по определенным правилам. В результате перед ученым стоит задача вычертить плоский граф, с вершинами в

Итак, все выше сказанное подтверждает практическую ценность графов.

Математика интернета

Интернет - всемирная система объединенных компьютерных сетей для хранения и передачи информации.

Сеть интернет можно представить в виде графа, где вершины графа - это интернет сайты, а ребра - это ссылки (гиперссылки), идущие с одних сайтов на другие.

Веб-граф (Интернет), имеющий миллиарды вершин и ребер, постоянно меняется - спонтанно добавляются и исчезают сайты, пропадают и добавляются ссылки. Однако, Интернет имеет математическую структуру, подчиняется теории графов и имеет несколько «устойчивых» свойств.

Веб-граф разрежен. Он содержит всего лишь в несколько раз больше ребер, чем вершин.

Несмотря на разреженность, интернет очень тесен. От одного сайта до другого по ссылкам, можно перейти за 5 - 6 кликов (знаменитая теория «шести рукопожатий»).

Как мы знаем, степень графа - это число ребер, которым принадлежит вершина. Степени вершин веб-графа распределены по определенному закону: доля сайтов (вершин) с большим количеством ссылок (ребер) мала, а сайтов с малым количеством ссылок - велика. Математически это можно записать так:

где - доля вершин определенной степени, - степень вершины, - постоянная, независящая от числа вершин веб-графа, т.е. не меняется в процессе добавления или удаления сайтов (вершин).

Этот степенной закон является универсальным для сложных сетей - от биологических до межбанковских.

Интернет как целое устойчив к случайным атакам на сайты.

Так как уничтожение и создание сайтов происходит независимо и с одинаковой вероятностью, то и веб-граф, с вероятность близкой к 1, сохраняет свою целостность и не разрушается.

Для изучения интернета необходимо строить модель случайного графа. Эта модель должна обладать свойствами реального интернета и не должна быть слишком сложной.

Эта задача пока полностью не решена! Решение этой задачи - построения качественной модели интернета - позволит разработать новые инструменты для улучшения поиска информации, выявления спама, распространения информации.

Построение биологических и экономических моделей началось значительно раньше, чем возникла задача построения математической модели интернета. Однако достижения в развитии и изучении интернета, позволили ответить на многие вопросы, касающиеся всех этих моделей.

Математика интернета востребована многими специалистами: биологами (предсказание роста популяций бактерий), финансистами (риски возникновения кризисов) и т.п. Изучение подобных систем - один из центральных разделов прикладной математики и информатики.

г. Мурманск с помощью графа.

Когда человек приезжает в новый для него город, как правило, первое желание - это посетить главные достопримечательности. Но при этом запас времени зачастую ограничен, а в случае деловой поездки, совсем мал. Следовательно, необходимо планировать знакомство с достопримечательностями заранее. И в построении маршрута отлично помогут графы!

В качестве примера рассмотрим типичный случай прибытия в Мурманск из аэропорта в первый раз. Планируется посетить следующие достопримечательности:

1. Морской православный храм Спас-на-водах;

2. Свято-Никольский собор;

3. Океанариум;

4. Памятник коту Семену;

5. Атомный ледокол Ленин;

6. Парк Огни Мурманска;

7. Парк Долина Уюта;

8. Кольский мост;

9. Музей истории Мурманского морского пароходства;

10. Площадь Пяти углов;

11. Морской торговый порт

Вначале расположим эти места на карте и получим наглядное представление о местоположении и расстоянии между достопримечательностями. Сеть дорог достаточно развита, и перемещение на автомобиле не будет затруднительным.

Достопримечательности на карте (слева) и полученный граф (справа) показаны на соответствующем рисунке ПРИЛОЖЕНИЯ №1. Таким образом, новоприбывший вначале проедет около Кольского моста(и, при желании может пересечь его туда - обратно); затем отдохнет в Парке Огни Мурманска и Долине Уюта и отправится дальше. В итоге оптимальный маршрут составит:

С помощью графа можно также визуализировать схему проведения соцопросов. Примеры представлены в ПРИЛОЖЕНИИ №2. В зависимости от данных ответов опрашиваемому задают разные вопросы. Например, если в социологическом опросе №1 опрашиваемый считает математику важнейшей из наук, у него спросят, уверенно ли он чувствует себя на уроках физики; если же он считает иначе, второй вопрос будет касаться востребованности гуманитарных наук. Вершинами такого графа являются вопросы, а ребрами - варианты ответов.

2.3. Применение теории графов при решении задач

Теория графов применяется при решении задач из многих предметных областей: математика, биология, информатика. Мы изучили принцип решения задач с помощью теории графов и составили собственные задачи по теме исследования.

Задача №1.

Пятеро одноклассников, на встрече выпускников, обменялись рукопожатиями. Сколько всего было сделано рукопожатий?

Решение: Обозначим одноклассников вершинами графа. Соединим каждую вершину линиями, с четырьмя другими вершинам. Получаем 10 линий, это и есть рукопожатиями.

Ответ: 10 рукопожатий (каждая линия означает одно рукопожатие).

Задача №2.

У моей бабушке в деревне, возле дома растут 8 деревьев: тополь, дуб, клен, яблоня, лиственница, береза, рябина и сосна. Рябина выше лиственницы, яблоня выше клена, дуб ниже березы, но выше сосны, сосна выше рябины, береза ниже тополя, а лиственница выше яблони. В какой последовательности расположатся деревья по высоте от самого высокого к самому низкому.

Решение:

Деревья - это вершины графа. Обозначим их первой буквой в кружочке. Проведем стрелки от низкого дерева к более высокому. Сказано, что рябина выше лиственницы, то стрелку ставим от лиственницы к рябине, берёза ниже тополя, то стрелку ставим от тополя к берёзе и т.п. Получаем граф, где видно, что самое низкое дерево - клен, потом яблоня, лиственница, рябина, сосна, дуб, береза и тополь.

Ответ: клен, яблоня, лиственница, рябина, сосна, дуб, береза и тополь.

Задача №3.

У Мамы есть 2 конверта: обычный и авиа, и 3 марки: квадратная, прямоугольная и треугольная. Сколькими способами Мама может выбрать конверт и марку, чтобы отправить письмо Папе?

Ответ: 6 способов

Задача №4.

Между населенными пунктами A, B, C, D, E построены дороги. Нужно определить длину кратчайшего пути между пунктами А и Е. Передвигаться можно только по дорогам, длина которых указана на рисунке.

Задача №5.

Тремя одноклассника - Максим, Кирилл и Вова решили заняться спортом и прошли отбор спортивные секции. Известно, что в баскетбольную секцию претендовал 1 мальчик, а в хоккей хотели играть трое. Максим пробовался только в 1 секцию, Кирилл отбирался во все три секции, а Вова в 2. Кого из мальчиков в какую спортивную секцию отобрали?

Решение: Для решения задачи применим графы

Баскетбол Максим

Футбол Кирилл

Хоккей Вова

Так как к баскетболу идет лишь одна стрелка, то Кирилла отобрали в сецию баскетбола . Тогда Кирилл не будет играть в хоккей , а значит, в хоккейную секцию отобрали Максима, который пробовался только в эту секцию, тогда Вова будет футболистом .

Задача №6.

Из-за болезни некоторых преподавателей, завучу школы, требуется составить фрагмент расписания занятий в школе хотя бы на один день, с учетом следующих обстоятельств:

1. Преподаватель ОБЖ согласен дать только последний урок;

2. Преподаватель географии может дать либо второй, либо третий урок;

3. Математик готов дать либо только первый, либо только второй урок;

4. Преподаватель физики может дать либо первый, либо второй, либо третий уроки, но только в одном классе.

Какое расписание может составить завуч школы, чтобы оно удовлетворяло всем преподавателей?

Решение: Эту задачу можно решить перебирая все возможные варианты, но проще, если начертить граф.

1. 1) физика 2. 1) математика 3. 1) математика

2) математика 2) физика 2) география

3) география 3) география 3) физика

4) ОБЖ 4) ОБЖ 4) ОБЖ

Заключение

В данной исследовательской работе была подробно изучена теория графов, доказана гипотеза, что изучение графов может помочь в решении логических задач, кроме того, рассмотрена теорию графов в разных областях науки и составлены свои 7 задач.

Использование графов при обучении обучающихся поиску решения задач позволяет совершенствовать графические умения учащихся и связывать рассуждения специальным языком конечного множества точек, некоторые из которых соединены линиями. Все это способствует проведению работы по обучению учащихся мышлению.

Эффективность учебной деятельности по развитию мышления во многом зависит от степени творческой активности учащихся при решении математических задач. Следовательно, необходимы математические задачи и упражнения, которые бы активизировали мыслительную деятельность школьников.

Применение задач и использованием элементов теории графов на факультативных занятиях в школе как раз и преследует цель активизации мыслительной деятельности учащихся. Мы считаем, что практический материал по нашему исследованию может быть полезен на факультативных занятиях по математике.

Таким образом, цель исследовательской работы достигнута, задачи решены. В перспективе мы планируем продолжить изучение теории графов и разработать свои маршруты, например, с помощью графа создать экскурсионный маршрут для школьного автобуса ЗАТО Александровск по музеям и памятным местам г. Мурманска.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    Березина Л. Ю. «Графы и их применение» - М.: «Просвещение», 1979

    Гарднер М. «Математические досуги», М. «Мир», 1972

    Гарднер М. «Математические головоломки и развлечения», М. «Мир», 1971

    Горбачев А. «Сборник олимпиадных задач» - М. МЦНМО, 2005

    Зыков А. А. Основы теории графов. — М.: «Вузовская книга», 2004. — С. 664

    Касаткин В. Н. «Необычные задачи математики», Киев, «Радяньска школа», 1987

    Математическая составляющая / Редакторы-составители Н.Н. Андреев, С.П. Коновалов, Н.М. Панюшкин. - М.: Фонд «Математические этюды» 2015 г. - 151 с.

    Мельников О. И. «Занимательные задачи по теории графов», Мн. «ТетраСистемс»,2001

    Мельников О.И. Незнайка в стране графов: Пособие для учащихся. Изд. 3-е, стереотипное. М.: КомКнига, 2007. — 160 с.

    Олехник С. Н., Нестеренко Ю. В., Потапов М. К. «Старинные занимательные задачи», М. «Наука», 1988

    Оре О. «Графы и их применения», М. «Мир», 1965

    Харари Ф. Теория графов / Пер.с англ. и предисл. В. П. Козырева. Под ред. Г. П. Гаврилова. Изд. 2-е. - М.: Едиториал УРСС, 2003. - 296 с.

ПРИЛОЖЕНИЕ №1

Составление оптимального маршрута посещения главных достопримечательностей

г. Мурманск с помощью графа.

Оптимальный маршрут составит:

8. Кольский мост6. Парк Огни Мурманска7. Парк Долина Уюта2. Свято-Никольский собор10. Площадь Пяти углов5. Атомный ледокол Ленин9. Музей истории Мурманского морского пароходства11. Морской торговый порт1. Морской православный храм Спас-на-водах4. Памятник коту Семену3. Океанариум.

ПУТЕВОДИТЕЛЬ ПО ДОСТОПРИМЕЧАТЕЛЬНОСТЯМ МУРМАНСКА

ПРИЛОЖЕНИЕ №2

Социологические опросы № 1, 2

Определения

Теория графов не обладает устоявшейся терминологией. В различных статьях под одними и теми же терминами понимаются разные вещи. Приводимые ниже определения - наиболее часто встречаемые.

Граф

Граф или неориентированный граф G - это упорядоченная пара G : = (V ,E )

  • V это множество вершин или узлов ,
  • E это множество пар (в случае неориентированного графа - неупорядоченных) различных вершин, называемых рёбрами .

V (а значит и E ) обычно считаются конечными множествами. Многие хорошие результаты, полученные для конечных графов, неверны (или каким-либо образом отличаются) для бесконечных графов . Это происходит потому, что ряд соображений становятся ложными в случае бесконечных множеств.

Вершины и рёбра графа называются также элементами графа, число вершин в графе | V | - порядком , число рёбер | E | - размером графа.

Вершины u и v называются концевыми вершинами (или просто концами ) ребра e = {u ,v } . Ребро, в свою очередь, соединяет эти вершины. Две концевые вершины одного и того же ребра называются соседними .

Два ребра называются смежными , если они имеют общую концевую вершину.

Два ребра называются кратными , если множества их концевых вершин совпадают.

Ребро называется петлёй , если его концы совпадают, то есть e = {v ,v } .

Степенью degV вершины V называют количество рёбер, для которых она является концевой (при этом петли считают дважды).

Вершина называется изолированной , если она не является концом ни для одного ребра; висячей (или листом ), если она является концом ровно одного ребра.

Ориентированный граф

Ориентированный граф (сокращённо орграф ) G - это упорядоченная пара G : = (V ,A ) , для которой выполнены следующие условия:

  • V это множество вершин или узлов ,
  • A это множество (упорядоченных) пар различных вершин, называемых дугами или ориентированными рёбрами .

Дуга - это упорядоченная пара вершин (v, w) , где вершину v называют началом, а w - концом дуги. Можно сказать, что дуга v w ведёт от вершины v к вершине w .

Смешанный граф

Смешанный граф G - это граф, в котором некоторые рёбра могут быть ориентированными, а некоторые - неориентированными. Записывается упорядоченной тройкой G : = (V ,E ,A ) , где V , E и A определены так же, как выше.

Понятно, что ориентированный и неориентированный графы являются частными случаями смешанного.

Прочие связанные определения

Путём (или цепью ) в графе называют конечную последовательность вершин, в которой каждая вершина (кроме последней) соединена со следующей в последовательности вершин ребром.

Ориентированным путём в орграфе называют конечную последовательность вершин v i , для которой все пары (v i ,v i + 1) являются (ориентированными) рёбрами.

Циклом называют путь, в котором первая и последняя вершины совпадают. При этом длиной пути (или цикла) называют число составляющих его рёбер . Заметим, что если вершины u и v являются концами некоторого ребра, то согласно данному определению, последовательность (u ,v ,u ) является циклом. Чтобы избежать таких «вырожденных» случаев, вводят следующие понятия.

Путь (или цикл) называют простым , если ребра в нём не повторяются; элементарным , если он простой и вершины в нём не повторяются. Несложно видеть, что:

  • Всякий путь, соединяющий две вершины, содержит элементарный путь, соединяющий те же две вершины.
  • Всякий простой неэлементарный путь содержит элементарный цикл .
  • Всякий простой цикл, проходящий через некоторую вершину (или ребро), содержит элементарный (под-)цикл, проходящий через ту же вершину (или ребро).

Более абстрактно, граф можно задать как тройку , где V и E - некоторые множества (вершин и рёбер , соотв.), а - функция инцидентности (или инцидентор ), сопоставляющая каждому ребру (упорядоченную или неупорядоченную) пару вершин u и v из V (его концов ). Частными случаями этого понятия являются:

Под данное выше определение не подходят некоторые другие обобщения:

  • гиперграф - если ребро может соединять более двух вершин .
  • ультраграф - если между элементами x i и u j существуют бинарные отношения инцидентности .

Литература

  • Оре О. Теория графов. М.: Наука, 1968. 336с. http://eqworld.ipmnet.ru/ru/library/books/Ore1965ru.djvu
  • Уилсон Р. Введение в теорию графов. Пер с англ. М.: Мир, 1977. 208с. http://eqworld.ipmnet.ru/ru/library/books/Uilson1977ru.djvu
  • Харари Ф. Теория графов. М.: Мир, 1973. http://eqworld.ipmnet.ru/ru/library/books/Harari1973ru.djvu
  • Кормен Т. М.и др. Часть VI. Алгоритмы для работы с графами // Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. - 2-е изд. - М.: «Вильямс» , 2006. - С. 1296. - ISBN 0-07-013151-1
  • Салий В. Н. Богомолов А. М. Алгебраические основы теории дискретных систем. - М.: Физико-математическая литература, 1997. - ISBN 5-02-015033-9
  • Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Наука, 1990. 384с. (Изд.2, испр. М.: УРСС, 2009. 392 с.)
  • Кирсанов М. Н. Графы в Maple. М.: Физматлит, 2007. - 168 c.

ГРАФЫ

Графы возникли в восемнадцатом столетии, когда известный мате­матик, Леонард Эйлер, пытался решить теперь уже классическую задачу о Кенигсбергских мостах. В то время в городе Кенигсбер­ге было два oстровa, соединенных семью мостами с берегами реки Преголь и друг с другом так, как показано на рис. 7.1. 3адача со­стоит в следующем: осуществить прогулку по городу таким образом, чтобы, пройдя ровно по одному разу по каждому мосту, вернуться в то же место, откуда начиналась прогулка. Решая эту задачу, Эйлер изобразил Кенигсберг в виде графа, отождествив его вершины с частями города, а ребра - с мостами, которыми связаны эти части. Как мы покажем в § 7.1, Эйлеру удалось доказать, что искомого маршрута обхода города не существует.

Рисунок 7.1. Схема старого Кенигсберга

В этой главе мы вводим стандартную терминологию, используемую в теории графов, и разбираем несколько конкретных задач решаемых с помощью графов. В частности, мы познакомимся с классом графов, называемых деревьями. Деревья – естественная модель, представляющая данные, организованные в иерархичную систему. Поиск по дереву для выделения отдельных предметов и сортировка данных в дереве представляет собой важные точки приложения усилий в информатике. В приложении к этой главе мы займемся сортировкой и поиском данных, организованных в деревья.

Графы и терминология

На рис. 7.1 изображены семь мостов Кенигсберга так. как они были расположены в восемнадцатом столетии. В задаче, к которой oбpa­тился Эйлер, спрашивается: можно ли найти маршрут прогулки, ко­торый проходит ровно один раз по каждому из мостов и начинается и заканчивается в одном и том же месте города?

Модель задачи - это граф, состоящий из множества вершин и множества ребер, соединяющих вершины. Вершины А, В, С и D символизируют берега реки и острова, а ребра а,в , c ,d, f и g обозначают семь мостов (см. рис. 7.2). Искомый маршрут (если он существует) соответствует обходу ребер графа таким образом, что каждое из них проходится только один раз. Проход ребра, очевидно, соответствует пересечению реки по мосту.

Рисунок 7.2. Модель задачи о мостах Кенигсберга

Граф, в котором найдется маршрут, найдется маршрут, на­чинающийся и заканчивающийся в одной вершине, и проходящий по всем ребрам графа ровно один раз, называется зйлеровым графом. Последовательность вер­шин (может быть и с повторениями), через которые проходит иско­мый маршрут, как и сам маршрут, называется эйлеровым циклом . Эйлер заметил, что если в графе есть эйлеров цикл, то для каждого ребра, ведущего в какую-то вершину, должно найтись другое ребро, выходящее из этой вершины 1 , и получил из этого простого наблюдсния такой вывод: если в данном графе существует эйлеров цикл, то к каждой вершине должно подходить четное число ребер.

Кроме того, Эйлеру удалось доказать и противоположное утвер­ждение, так что граф, в котором любая пара вершин связана не­которой последовательностью ребер, является Эйлеровым тогда и только тогда, когда все его вершины имеют четную степень. Степенью вершины v называется число δ(v) ребер, ей инцидентных 2 .

Теперь совершенно очевидно, что в графе, моделирующем задачу о мостах Кенигсберга, эйлерова цикла найти нельзя. Действитель­но, степени всех его вершин нечетны: δ(B ) = δ(С) = δ(D) = 3 и δ(A ) = 5. С легкой руки Эйлера графы, подобные тому, который мы исследовали при решении задачи о мостах, стали использовать­ при решении многих практических задач, а их изучение выросло в значительную область математики.

Простой граф определяется как пара G = (V, Е), где V - ко­нечное множество вершин, а Е - конечное множество ребер, при­чем не может содержать петель (ребер, начинающихся и закан­чивающихся в одной вершине) и кратных ребер (кратными назы­ваются несколько ребер, соединяющих одну и ту же пару вершин). Граф, изображенный на рис. 7.2. не является простым, поскольку, например, вершины А и В соединяются двумя ребрами (как раз эти ребра и называются кратными).

Две вершины u и v в простом графе называются смежными , если они соединяются каким-то ребром е , про которое говорят, что оно инцидентно вершине u (и v). Таким образом, мы можем предста­влять себе множество Е ребер как множество пар смежных вершин, определяя тем самым нерефлексивное, симметричное отношение на множестве V. Отсутствие рефлексивности связано с тем, что в простом графе нет петель, т. е. ребер, оба конца которых находятся в одной вершине. Симметричность же отношения вытекает из того факта, что ребро е , соединяющее вершину и с v, соединяет и v с и (иначе говоря, ребра не ориентированы, т. е. не имеют направления). Единственное ребро простого графа, соединяющее пару вершин u и v, мы будем обозначать как иv (или vи).

Логическая матрица отношения на множестве вершин графа, котopoe задается его ребрами, называется ,матрицей смежности. Симметричность отношения в терминах матрицы смежности М озна­чает, что М симметрична относительно главной диагонали. А из-за нерефлексивности этого отношения на главной диагонали матрицы М стоит символ «Л».

Пример 7.1. Нарисуйте граф G(V, Е) с множеством вершин V = {а, Ь, с, d, е} и множеством ребер E = {ab, ae, bc, bd, ce, de}. Выпишите его матрицу смежности.

Решение. Граф G показан на рис. 7.3.

Рисунок 7.3.

Его матрица смежности имеет вид:

Для восстановления графа нам достаточно только тех элементов матрицы смежности, которые стоят над главной диагональю.

Подграфом графа G = (V, E) называется граф G’ = (V’, E’), в котором E’ C E и V’ C V.

Пример 7.2 Найдите среди графиков H, K и L, изображенных на рис. 7.4, подграфы графа G.

Решение. Обозначим вершины графов G, H и K как показано на рис. 7.5. Графы H и K – подграфы в G, как видно из наших обозначений. Граф L не является подграфом в G, поскольку у него есть вершина индекса 4, а у графа G такой нет.

Маршрутом длины k в графе G называется такая последовательность вершин v 0 , v 1 , …, v k , что для каждого i = 1, …, k пара v i – 1 v i образует ребро графа. Мы будем обозначать такой маршрут через v 0 v 1 v k . Например 1 4 3 2 5 – это маршрут длины 4 в графе G из примера 7.2.

G H

K L

Рисунок 7.4.

Циклом в графе принято называть последовательность вершин v 0 , v 1 , … , v k , каждая пара которых является концами одного ребра, причем v 0 = v 1 , а остальные вершины (и ребра) не повторяются. Иными словами, цикл – это замкнутый маршрут, проходящий через каждую свою вершину и ребро только один раз

1 2 1 2 3

Рисунок 7.5

Пример 7.3. Найдите циклы в графе G из примера 7.2.

Решение. В этом графе есть два разных цикла длины 5:

1 3 2 5 4 1 и 1 2 5 4 3 1

Мы можем пройти эти циклы как в одном направлении так и в другом, начиная с произвольной вершины цикла. Кроме того, в графе есть три разных цикла длины 4:

1 2 5 4 1, 1 2 3 4 1 и 2 5 4 3 2,

и два цикла длины 3:

1 2 3 1 и 1 3 4 1.

Граф, в котором нет циклов, называется ацикличным. Структуры деревьев, которые возникают в вычислениях, представляют собой частный случай ацикличных графов. Позже в этой главе мы ими займемся.

Граф, называют связным, если любую пару его вершин соединяет какой – нибудь маршрут. Любой общий граф можно разбить на подграфы, каждый из которых окажется связным. Минимальное число таких связных компонент называется числом связности графа и обозначается через c (G ) . Вопросы связности имеют важное значение в приложениях теории графов к компьютерным сетям. Следующий алгоритм применяется для определения числа связности графа.

Алгоритм связности.

Пусть G = (V, E) – граф. Алгоритм предназначен для вычисления значения c = c (G ), т.е. числа компонент связности данного графа G.

V’ :=V;

while V’≠ ø do

Выбрать y Є V

Найти вершины, соединяющие маршрутом с у;

Удалить вершину у из V ’ и

соответствующие ребра из Е;

c := c +1;

Пример 7.4. Проследите за работой алгоритма связности на графе, изображенном на рис. 7.6.

Рисунок 7.6.

Решение. Смотри табл. 7.1.

Таблица 7.1.

Исходные значения

{1,2,3,4,5,6,7,8}

Выбор у = 1

Выбор у = 2

Выбор у = 7

Итак, c (G ) = 3. Соответствующие компоненты связности приведены на рис. 7.7.

5